
Xgrid and Cross Platform
Grid Computing

Abstract:

This paper will provide an overview of grid computing including its history, current develop-
ment, terminology, and use. The scope of this project is geared towards the implementation of
Apple’s Xgrid technology in a university environment, or in a home environment for power users
such as architects. Later in this paper we will implement an Xgrid, and will demonstrate its cross
platform abilities, while exploring its revolutionary take on grid computing. Benchmarks of this
grid will be done using light ray tracing software called Pov-Ray in combination with Architec-
tural CAD software called Sketchup, and will produce a series of complex graphical scenes. Each
computer on the grid will be responsible for rendering at least one scene, and rendering times
will be recorded.

Since the Xgrid technology is new to the market there are still many flaws and bugs which will
make this goal very challenging. However, this project has made the Linux Xgrid agent func-
tional, which until now has remained dysfunctional, and through a combination of Apache and
PFTP has been made to work almost flawlessly with Xgrid. An automated installation script has
also been created that will download and install all the necessary dependency requirements for
the Xgrid agent. This script will allow administrators to quickly and efficiently distribute the
Linux Xgrid agent between PC’s.

Through the examination of this technology we should be able to draw some conclusions as to
the state of cross platform grid computing using Xgrid, and provide some recommendations of
how UCFV could use this technology.

Stuart Bowness
440 Project Report• University College of the Fraser Valley• April, 2005

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 1

Table of Contents

Introduction! 7

Literature Review ! 9

Grid Computing Terminology and Technology! 9

History ! 13

Current Work in Grid Computing ! 15

Project Justification: ! 25

Brief Descriptions of Project Products:! 26

Summary of Project Deliverables:! 26

Determination of Project Success:! 27

Definition of Hardware Resources:! 27

Definition of Software Requirements:! 28

Xgrid Overview ! 29

Introduction to Xgrid ! 29

Xgrid in Action! 31

Under the Hood of Xgrid ! 33

Xgrid Security! 37

How Job Submission Works! 38

Job Types! 40

The Xgrid User Interface ! 44

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 2

Xgrid Implementation! 45

Implementing Xgrid on OS X ! 45

Installing a Cross Platform Xgrid ! 49

Hardware Setup ! 51

SSH and Remote Installation! 54

Cross Platform Problems and Solutions! 55

Apache 2.0 and PFTP! 57

Benchmarking and Testing! 59

Pov-Ray! 59

Sketchup! 61

Results! 65

CGI, Blosxom, and RSS for Displaying Xgrid Output! 73

Conclusions ! 75

The Future of Xgrid! 75

Recommendations! 76

Final Conclusion! 78

Glossary! 81

Appendixes ! 83

Appendix 1 - Darwinports and Pov-Ray! 83

Introduction ! 83

Installing XCode Tools ! 83

Installing DarwinPorts on OS X ! 85

Finally Installing Pov-Ray on OS X ! 87

Installing DarwinPorts and Pov-Ray on Linux! 87

Appendix 2 - Xgrid User Interface! 93

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 3

Controller and Client Setup! 93

The Xgrid.app! 98

Conclusion ! 104

Appendix 3 - Xgrid Installation Files! 105

Appendix 4 - Choosing the Linux Distribution ! 106

Choosing our Linux Flavor ! 106

Ubuntu Linux! 107

Fedora Core 3! 116

Linux Conclusions ! 123

Appendix 5 - Installing the Xgrid Linux Agent! 125

Appendix 6 - Xgrid Linux Agent Segfault Issues! 129

Appendix 7 - Editing the xgrid.config.xml File ! 133

Appendix 8 - Automating the Installation of the Agent, DarwinPorts, and Pov-Ray!
134

Appendix 9 - Custom Pov-Ray Libraries! 146

Appendix 10 - The Rendering Script! 147

Appendix 11 - Custom Apache2.conf! 150

Appendix 12 - Gantt Chart! 151

End Notes ! 153

Bibliography! 156

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 4

List of Figures
Figure 1 - Industries where HPC is being used

Figure 2 - Xerox Palo Alto Research Center

Figure 3 - The SETI@Home project

Figure 4 - A sample Condor / Globus network utilizing Intel / Linux Hardware

Figure 5 - Virginia Tech's supercomputer was assembled in 3 weeks by many volunteers

Figure 6 - The final product - a supercomputer

Figure 7 - The Cooling system used

Figure 8 - The rack-mount system

Figure 9 - World's 3 fastest supercomputers 2003

Figure 10 - Cost in millions for the 3 fastest supercomputers in the world

Figure 11 - A screenshot of the Xgrid Blast application with one computer at 1.5GHz

connected

Figure 12 - . The locations of major contributers to Xgrid at Stanford

Figure 13 - The roles and interactions of computers within an Xgrid

Figure 14 - The submission of cal (calendar) jobs to Xgrid

Figure 15 - Sample output of the first cal job

Figure 16 - The submission of a custom Pov-Ray job

Figure 17 - The network structure

Figure 18 - The submission of a Pov-Ray job taking a file list as an argument

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 5

Figure 19 - The first Pov-Ray rendered scene

Figure 20 - The first 3D architectural drawing created using Sketchup for OS X

Figure 21 - The room.pov render

Figure 22 - The author hard at work on a 3D architectural drawing, in the background is

a Dual Processor PowerMac which was used in exploding the final drawings

 Figure 23 - A wireframe outline of the final 3D architectural drawing

Figure 24 - One of the many final Pov-Ray renders from the architectural drawing

Figure 25 - The time to render 10 identical scenes on a single 1.5GHz machine

Figure 26 - The scene used for the 10 identical renders

Figure 27 - Time taken to render 10 identical scenes using 6 computers

Figure 28 - Time taken to render 10 identical scenes using 3 fastest computers

Figure 29 - A screenshot of the 1.5GHz machine finishing the last task in the Pov-Ray

render

Figure 30 - The final result depicting the times taken to render 10 identical scenes

Figure 31 - The time taken to render 7 scenes on a 1.5GHz machine

Figure 32 -The time taken to render 7 scenes on 4 computers

Figure 33 - A comparison of standalone vs. Xgrid benchmark times on a set of 7 scenes

Figure 34 -The blog used in displaying the Pov-Ray output files

Figure 35 - GridObjects is a web-based Xgrid management system

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 6

INTRODUCTION
Computing technology has grown exponentially in recent years, particularly in the fields

of microprocessors, mass storage, and networking. This growth in power has buried the

21st century deep into the world of technology, and has launched computing into homes

and businesses worldwide. With society’s new-found dependence on computing, our reli-

ance on the speed of processing has also increased as we have begun to do far more with

our computers than we would have ever done in the 1980’s and 1990’s. Processing de-

pendent computing has flourished under the wealth of software applications that have

been written to take advantage of these new modern processors, and as a society, we have

eagerly integrated these advances into our daily lives. Businesses perhaps now more than

ever rely on computers to process transactions, data, and a plethora of other information,

and home users have begun using their computers for much more than typing and games.

Universities have also capitalized on this growth in computational power and are just be-

ginning to realize the potential in harnessing massive amounts of computational power

for aiding research.

Grid computing is the concept behind harnessing the resources of multiple computers

over a network, and using that power to solve compute-intensive problems. Grid comput-

ing is currently a very hot topic amongst corporate and academic circles at the moment,

and is most prominent in fields where massive amounts of processing are done on a daily

basis. Some of these these fields include biomedical research, mathematical and statistical

research, and graphic rendering.

One of the problems presented to individuals who wish to implement grid computing is

that computers in most Universities or business offices do not run the same operating sys-

tem or have the same hardware. In order to demonstrate how grid computing can be

used in everyday activities on a variety of operating systems, this paper will examine how

such technology can be used to benefit modern architects. A popular 3d CAD program

called Sketchup will be used in conjunction with light ray rendering software to produce a

series of environments which the grid will compute. Each of these environments will be

intensive enough to take a considerable length of time for a single computer to process,

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 7

hence the advantage of using grid technology. A cluster of Apple and Linux based ma-

chines will be assembled, and the final product will be a series of high quality rendered

architectural scenes. The purpose behind this research paper is to provide a detailed over-

view of grid computing, its benefits, and how it is being used today and will show how this

technology can be used in real life cross platform situations. Through research and the

demonstration of these grid-computing technologies it will be possible to compare these

findings with how the technology could be used in a University setting for research pur-

poses.

This paper is highly recommended reading for anyone interested in the growing field of

grid computing, and is wondering how they could tie such technology into aspects of their

work or research. Anyone with tasks that take significant amounts of processing time and

have a method for breaking these tasks into smaller tasks will definitely be able to take ad-

vantage of this technology, and will find this document an invaluable asset to their project

goals. Architects using Sketchup in combination with SU2Pov and Pov-Ray will also find this

paper useful as it details considerable amounts of information on how to distribute 3d

scenes. University researchers are also one of the primary groups which this paper is

geared towards. Researchers will find that this document explains how grid computing

can benefit their research work and will develop a better understanding of what this tech-

nology is capable of, and the direction in which it is going.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 8

LITERATURE REVIEW

Grid Computing Terminology and Technology
The term “grid computing” seems to be something of a cliche phrase that you hear dis-

cussed everywhere from the world of academia to large corporations, film studios and

graphic workshops. It is a term that has been so loosely coined that it can mean any num-

ber of things. Below are some of the ways in which grid computing has been defined:

• Transparent, secure, and coordinated resource sharing and collabo-

ration across sites.

• The ability to aggregate large amounts of computing resources

which are geographically dispersed to tackle large problems and

workloads as if all the servers and resources are located in a single

site.

• A hardware and software infrastructure that provides dependable,

consistent, pervasive, and inexpensive access to computational re-

sources

• The flexible, secure, coordinated resource sharing among dynamic

collections of individuals, institutions, and resources.

For the purposes of this paper, grid computing is loosely defined as: The ability to form a

heterogeneous network of computers capable of distributing a maximum of available re-

sources to tackle large complex problems and workloads.

The term heterogeneous in this context is used to outline that networks do not need to

consist of single homogeneous operating systems, and can consist of computers running

either Windows, Linux, BSD, Unix, or Mac OS X. This is imperative to the definition of

grid computing because, in a real life environment, it is not frequent that every system

available on the network is running the same operating system.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 9

There are four aspects of grid computing that will appear throughout the course of this

paper: high performance computing, high throughput computing, cluster computing,

and internet computing.

High performance computing (HPC) is generally referred to as an aspect of super com-

puting where grids of processors are utilized to build a system capable of enormous proc-

essing power. Applications of HPC can be found in weather modeling, drug development,

and financial forecasting. HPC is most effective in computing either “embarrassingly par-

allel” or “deeply parallel” problems. Embarrassingly parallel problems, like the aforemen-

tioned SETI@Home project, are where a massive amount of data can be broken up in

any number of ways, and to which analysis is applied. Deeply parallel problems are those

where most of the calculations in a problem are integrated with another part of the proc-

ess either as an input or a potential side effect. Deeply parallel problems are often referred

to as non-linear and the problems often take on a hierarchical structure. HPC is essential

for both embarrassingly parallel and deeply parallel tasks as the processing of data

quickly is of upmost importance. High performance computing is often measured in

terms of floating-point operations1 per second, and is used in an environment where

every second counts. Some of the industries in which high performance computing is cur-

rently being used is depicted [Fig. 1] below:

Digital Content Creation Database Telecomm
Semiconductor Geophysics Weather and Climate Research
Automotive Software Information Processing Service
Others

15%

5%
5%
6%

7%

20%

15%

12%

8%
7%

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 10

1 See Glossary [1]

Fig. 1 - Industries where HPC

is being used.

High throughput computing (HTC) is very similar to high performance computing but its

goals are slightly different. Instead of processing being intensely done over very short in-

tense periods of time, processing is done over very long periods of time and as such, HTC

is measured in terms of floating-point operations per year. This type of computing is par-

ticularly of use to scientists, engineers and researchers who are looking at what they can

accomplish over N months/years instead of over N days. Below is an example of HTC

in action as discussed by Miron Livny during an interview with HPCwire [1].

“If you must manufacture a chip, you have a window of about three months to run as many

simulations as you can before bringing the product to market. Essentially, this is an HTC prob-

lem. If you have a high-energy physicist who is reconstructing events and enriching them with

Monte Carlo data, the project has a year or two to complete, but the more computational resources

that can be brought to bear in that time, the greater will be the statistical significance attained.

This too is an application basically limited by throughput rather than response time."

The Condor Project, which will be mentioned more in depth later, is a software applica-

tion which provides this kind of HTC power.

Cluster computing came about as a response to the ridiculous price of supercomputing.

Clusters run on freely available software, and usually on free operating systems such as

FreeBSD, or Linux. There is some overlap between cluster computing and HPC as they

both share similar outcomes in their goals to create a supercomputer that can be used for

massively parallel applications, however HPC is geared around the creation of a highly

customized supercomputer, whereas cluster computing is geared towards the creation of a

supercomputer through the use of publicly available hardware components. Clusters are

made up of individual computers, each of which is called a node. Technically each com-

puter in an office could act as a node, but in a true clustering environment, nodes would

consist of dedicated machines which are interconnected through a fiber optic, or gigabit

ethernet cable. The explosion in the speed of microprocessors over the last few years has

really made cluster computing a reality. This year, at Doshisha University in Japan they

have just finished building a Gigabit ethernet cluster of 512 1.8Ghz AMD Opteron ma-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 11

chines with a computational power equivalent to 1169 Giga-Flops [2]. This has given

them a 298th place listing on the Top 500 listing of supercomputers in the world, and al-

though it is certainly not a first place finish, it is a respectable result for a supercomputer

that is comprised of off the shelf components.

With the sudden growth in both the size and speed of the internet, the availability of

computing power available to researchers has risen exponentially. The type of computing

power discussed here is not the power of large supercomputers, or even interwoven net-

works of high performance clusters, rather, it is the power of the home computer, and is

known as the field of internet computing. Internet computing occurs where jobs are par-

allel enough that they can be broken down into individual tasks, but instead of being dis-

tributed between hundreds of processors on a giant mainframe or cluster, they are dis-

tributed to clients all over the world via the internet. The basic theory behind internet

computing is that it empowers individuals who own computers and are connected to the

internet to donate their computers to any compute-intensive project. Users can download

a lightweight client which will periodically connect to a centralized server to download

data and begin new tasks, or to upload data, and finish old tasks. The central server in this

manner is not only responsible for providing clients with uploads and downloads, but it

also is responsible for gathering and compiling the data returned from these clients into a

result. Internet computing has become a very powerful way to acquire a vast amount of

computational power, but it does have certain limitations and constraints. The market for

freely available computational power is potentially massive, however, a large majority of

home users do not choose to allow their computers to work on such projects nor are they

aware that such programs exist, and many projects which have poorly defined goals, or

require complex setup and installation instructions will find that the amount of users they

can gather will be relatively small. If internet computing was to be used for small to me-

dium scale research projects, the results would not be nearly as efficient as they might be

within the confines of a dedicated grid. However, with a large scale research project and

solid project goals, this form of computing definitely has gross computational advantages

over the long term especially since it is essentially free.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 12

Next this paper will discuss the history and evolution of the grid computing field, and

what other organizations around the world are doing to promote and integrate its use.

History
Grid computing started in the 1970’s when the cost of processing was so high that every

effort was made to save CPU cycles. In those days machines came in the form of big

mainframes and cost hundreds of thousands of dollars. As a result, methodologies were

created for maximizing the use of spare cycles, and the concept of a Grid was given birth

[3]. Some of the earliest experiments done with grid computing included programs called

Creeper and Reaper. These programs ran on the ARPA-net which was the forerunner to the

world wide web we use today. These projects were “worm” programs in which the

creeper would replicate itself from machine to machine, and the reaper would act as a

destructor and remove the creeper from the machines [4]. In 1973, the Xerox Palo Alto

Research Center [Fig. 2] made some major breakthroughs that heavily influenced the de-

velopment of distributed computing. Some of these developments included the develop-

ment of the individual computer workstation, the installation of the first ethernet network

which allowed autonomous machines to

communicate with each other, and lastly

the PARC developed the first distributed

file server so that users could share

common files. At the PARC another

“worm” was created by scientists John F.

Schoch and Jon A. Hupp. The purpose

of this worm was to move from machine

to machine using idle resources for

beneficial purposes. In another similar

effort Richard Crandall (Currently an

Apple employee and a professor at Reed College USA) networked NeXT computers

which performed computations and combined the efforts of multiple machines [5]. All of

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 13

Fig. 2 - Xerox Palo Alto Research Center

these developments and inventions helped pave the road for the future of distributed

computing.

With the invention of the modern internet in 1991, distributed computing has elevated to

much more than computing over local area networks, and grids now operate across mul-

tiple platforms, and across geographically dispersed areas. Two distributed computing ef-

forts in particular have elevated themselves past levels anyone had anticipated and now

have millions of contributing computers. The first of these projects is called distributed.net

and, when it first started it had thousands of contributers who helped crack encryption

algorithms. The second project is the

much more infamous SETI@Home

[Fig. 3] project which searches for

extraterrestrial intelligence through

the analysis of radio signal fluctua-

tions. SETI@Home is the largest,

most successful distributed comput-

ing project to date and has well over

2 million people running its software.

These 2 million people field 3 mil-

lion computers that average about 14 teraflops (14 trillion floating point operations per

second) and has completed around 500,000 years processing time in the past year an a

half [6]. The advantages are purely cost-effective, as the cost of running a supercomputer

capable of the same output would cost millions of dollars. Since the creation of

SETI@Home and the realization of its rapid success, other projects have similarly ap-

peared in order to capitalize on the new-found apparent wealth of processing power sud-

denly available. Folding@Home is another program that was created with the hopes of

attracting enough processing power to assist research in understanding protein folding,

protein aggregation, and various other related diseases and is sponsored by Stanford Uni-

versity. The Find - A - Drug project has also been recently launched and seeks computing

power to aide their research in discovering new drugs that can be used to cure malaria,

cancer, HIV, and to counteract bioterrorism. All of these emerging grids rely on their own

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 14

Fig. 3 - The SETI@Home project

their own custom software to permit individuals all over the world to join to their net-

work, and assist them in the processing of data and interpretation of results.

Grid technology has come a long way since its inception, but still has yet to bring the

benefits of its power to the average artist, scientist, or researcher in a manner that is easy

to setup, manage, and maintain. Certainly there are many distributed computing projects

around which allow users from all over the world to donate their computers and resources

to, but there are far fewer projects which allow individuals or small to medium sized or-

ganizations to easily create their own distributed systems. Most grid systems are difficult to

setup, require complex command-line knowledge, and often require strong scripting

knowledge in order to submit “jobs” to the network. Most researchers, and certainly most

graphic artists, do not necessarily have the skills or the background in order to utilize

these tools, however things are beginning to change and several major endeavors are un-

derway to bring these tools to the public.

 Current Work in Grid Computing
One of the largest grid endeavors that has the aspiration of bringing grid computing to

the masses is Sun Microsystem’s Sun Grid Utility. At the time which this report was writ-

ten, this utility has not yet been released, but is expected to reach consumers within the

next six months. According to Sun:

“The Sun Grid compute utility provides customers with fully virtualized cpu !

memory and high-performance storage connected through a secure networked

Grid, at a price of $1/cpu-hr. Customers can use it for jobs such as Monte Carlo

simulations, protein modeling, reservoir simulations, mechanical CAD simulations

and similar non-transactional workloads. The Sun Grid compute utility will de-

liver a standard computing Grid, powered by AMD Opteron processor-based sys-

tems, Solaris 10 OS and N1 Grid Engine, to help provide customers optimal per-

formance, functionality and security”[7].

Or in other words, Sun provides the hardware, a pre-configured grid, and pay-as-you-go

pricing. This concept is fairly revolutionary, and comes at a cost which both researchers,

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 15

scientists, and graphic artists, under heavy time constraints, will all applaud. Not only will

this save heavily on infrastructure costs, but it will also allow scientists to use a grid on an

as needed basis. Better than this yet is Sun’s Grid Storage Utility which supports customer’s

grid jobs at the price of $1 per Gigabyte/Month. This allows their customers to store

their jobs, upload and download data, and not have to worry about hardware issues, con-

figuration, or software setup. The Sun Grid Storage Utility is also secure, and can be rented

for any period of time.

IBM has also begun development to embrace the power of grid computing and is cur-

rently working on a special product line called the IBM @ Server [8] which will form a

solid platform for grid development and grid management. IBM has also created a DB2

line of products which sport tools to enable the efficient setup of grids, and the creation of

complex data infrastructures. This, in combination with the @ Server line, will create a

whole range of solutions for businesses looking for more computational power to analyze

statistical data, project forecasts, or analyze markets. Outside of these solutions IBM also

plans in the future to grid-enable many of its systems and software. Grid-enabled applica-

tions will automatically submit work to systems connected to the grid to compute when-

ever the nature of the task is parallel enough to be worthwhile distributing.

Microsoft is also looking towards the future of grid technology team, and has one of their

infamous skunk-works teams developing a product called Bigtop which has been kept very

secretive over the last year. According to an unidentified source at Microsoft-Watch.com

“Microsoft is working on a skunk-works project that is designed to allow developers to

create a set of loosely coupled, distributed operating-systems components in a relatively

rapid way” [9]. Bigtop will have methods for automating the creation of highly parallel

processes, and will introduce its own customized programming language called “High

Wire” for this specific purpose. A concept known as “Bigparts” will permit the integration

of a PC device to be used as a special purpose server in this environment, and will feature

web based management as opposed to local management so these servers can be man-

aged remotely. It is likely that the public can expect to see a preview release of the Bigtop

around the first quarter of 2006, and a stable release closer to the end of the decade.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 16

Also, away from the world of the typical “big guns” of the computing industry there are

some exciting grid projects that much smaller companies are bringing to the table. Globus

Alliance is perhaps one of the most active and perhaps largest ongoing grid researchers

out there and is funded by some of the big name companies previously mentioned, in-

cluding, IBM, Microsoft, and Cisco Systems. The Globus project itself, however, is largely

maintained, and developed by a group of academic individuals from around the U.S. and

Europe. These individuals include contributers from several universities and laboratories,

and also the National Institute of Advanced Industrial Science Research Center in Japan.

Interestingly the Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

is also involved, though finding any information on what exactly they do for Globus was

not possible. Globus’ research focuses not only on the development of grid infrastructures,

but also on the development and design aspect of creating applications that can utilize

grid services. Globus Alliance provides a toolkit which can be used for building grids and

includes software used in the security, information infrastructure, resource management,

data communication, fault detection, and portability of grids. This toolkit can be used

independently, or in conjunction with other applications to develop grid services. As every

organization is different and has different network topologies and issues, the Globus

toolkit is built to work seamlessly with existing infrastructure. Its core services, interfaces,

and protocols allow users to access remote resources as if they were located on their own

machine while also preserving control over who can use these resources and when they

can access them. One of the best things about Globus is that it is a completely open

source (Similar to the Linux operating system) and, as a result, does not require its’ users

to wait for vendor provided upgrades or updates because the source is readily available.

According to Globus, this “encourages broader, more rapid adoption and leads to greater

technical innovation, as the open-source community provides continual enhancements to

the product” [10]. Globus Alliance is catering to large scale grid deployments, and offers

all the control that serious grid geeks demand.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 17

The Condor Project is very

closely aligned with the

Globus Alliance project but

is distinct in more than a

few ways. Condor is de-

signed to be a specialized

work management system

for computationally inten-

sive jobs. Similar to other

grid software Condor pro-

vides a job queuing mecha-

nism, scheduling, policy,

priority schemes, resource

monitoring, and resource

management. It functions in

a manner which permits users to submit their parallel computing tasks, monitor them,

and of course permits notification upon their completion. What Condor does differently

from most other grids is that it does not require a computer to become a dedicated grid

computer in order to participate in grid activity. A single machine can join the Condor

grid only when it is idle, and will stop tasks once the user returns to the computer. This is

a very powerful resource for universities like UCFV in particular as it harnesses the

maximum computational power available to researchers, whilst not interrupting ongoing

work. Condor is also fully capable of being integrated with resources managed by a

Globus enabled grid [Fig. 4], and as such, has a lot of expandability. One of the great

things about Condor is that it is at a stable 6.7 release, and is offered as a completely cross

platform Grid. Condor will run on most Linux distributions, Mac OS X, and of course

Microsoft Windows. Unlike the technologies that have been discussed earlier, with the ex-

ception of Globus, this technology is available now, and is being put to good use by both

educational environments and businesses alike [11].

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 18

Fig. 4 - A sample Condor /Globus network utilizing Intel/

Linux hardware

Apple has also recently launched itself into the research world on a number of fronts, and

hopes to once again become a dominant force in education and research. Virginia Tech

has become the fore-runner for the latest Apple technology as they were in the market for

a high performance supercomputer at the same time that Apple was looking to demon-

strate some of its engineering prowess. What Virginia Tech got, was not only a super-

computer that landed in the top 5 supercomputers in the world, but it also achieved the

ranking of the fastest university supercomputer in the world. But what does supercomput-

ing have to do with grid technology? In Virgnia Tech’s case, their supercomputer consists

of 1100 Dual 2 Ghz Powermac G5’s, so in the traditional sense of the word, it is not a

single mainframe supercomputer, it is a series of networked desktop computers that com-

bine to form a supercomputer, or perhaps a better word for it might be a super grid. Due

to the excellent documentation available on how they setup this super grid, this paper will

take a brief look at what Virginia Tech has done, how much it has cost, and how they are

using this technology. Although UCFV may not have the funds to create a grid this pow-

erful, it is an excellent model.

Virginia Tech first started the project to create a world class supercomputer in September

2003. Srinidhi Varadarajan, PhD, was appointed director of this project, and found

quickly that the IBM’s G5 which Apple uses in its PowerMacs was a perfect fit for the ar-

chitecture and roles of their system. The G5 which Virginia Tech is currently using sports

a 64 bit processor, 2 floating point units, supports up to 8 GB of memory, and speeds of 1

Ghz on the front - side bus for each processor which offers a staggering 16GBps (Giga-

bytes per second) throughput on a dual 2Ghz PowerPC processor setup. Bandwidth is fur-

ther optimized through utilizing a 400Mhz, 128 bit memory bus with a low latency hy-

pertransport interface that connects the PCI-X controller, and the I/O subsystems to a

system controller. This is one of the many reasons behind the blazing speeds that their

supercomputer has achieved. For the first time, according to Varadarajan, “clusters fi-

nally have the capacity to go toe to toe against the fastest custom designed supercomput-

ers”[12]. and he has been very impressed with the fact that there really is not much you

can’t do on his cluster that you can do with a supercomputer. His 1100 PowerMacs have

provided 2200 CPU’s which have delivered over 10 teraflops of processing power to re-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 19

searchers at Virginia Tech. Virginia tech is also currently in the middle of a major up-

grade involving a move from Apple’s Dual 2Ghz Powermacs to the Apple Dual 2.5Ghz

XServes. This they hope will provide them with something in the neighbourhood of 30

teraflops of computing power.

The machines and
the PCI - X network
cards arrived in early
september, and within

3 weeks [Fig. 5] the entire

cluster was assembled.

Initial benchmarks

proved very impressive

and much praise was

given to the PCI-X net-

work cards. These PCI -

X network cards plug

into a PCI -X expansion

slot which features a
133 Mhz bus and is much faster than the standard and sluggish 33Mhz PCI bus that is

standard in average desktop machines. This makes the PCI - X network card ideal for

high performance networking, and delivers very high network bandwidth with very low

latency. These cards were then used in conjunction with fiber optic cable to interconnect

all of the G5 nodes (individual PowerMac G5 computers) into a single super computer.

By December they had finished benchmarking the system, and were ready to see some

results.

“It was really nice to have the same platform running on my desktop that I can use to

check email, and also at the same time connect to the super computer, which is one of the

fastest supercomputers in the world.”

	 - Srinidhi Varadarajan, PhD - Director, Terascale Computing Facility, Virginia Tech

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 20

Fig. 5 - Virginia Tech’s supercomputer was assembled in 3

weeks by many volunteers.

Originally Virginia Tech had hoped for a supercomputer within the top 10, the top 5 be-

ing optimistic, but they were elated to find themselves placed with the worlds third fastest

supercomputer. Both Apple and Virginia Tech were very proud of their results, and is an

excellent demonstration of a leap in super-computing performance, super-computing

manageability, and supercomputing price. Price of course is always a determining factor

when considering the development of a supercomputer [Fig. 6].

The price for these 1100 PowerMac

G5’s, their rack-mount housing [Fig. 8],

the cooling system [Fig. 7], and of

course the miles of fiber-optic cable that

were needed came at the mere price of

$5.2 million US. Now this may seem

like it is a very large price to pay for a

supercomputer, but in actuality the

price of the system is very small. Con-

sider the chart on the following below.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 21

Fig. 8 - The rack-mount housing

Fig. 6 - The final product - a supercomputer Fig. 7 - The cooling system used

Here is a comparison of the worlds fastest 3 supercomputers [Fig. 9]. Virginia Tech is

about 30% slower than the Los Alamos Lab, and more than 3 times slower than NEC’s

Earth Simulator [13].

However when considerations additional cost in millions that these organizations have

paid, Virginia Tech is the clear winner. The cost savings of implementing an Apple Grid

Cluster ($5.2M) [Fig. 10], and using it as a supercomputer are immense in comparison.

Earth Simulator (Japan) Los Alamos Lab (ASCI Q) Virginia Tech

0

10

20

30

40

Speed (TeraFlops)

10.28
13.88

35.86

$0M

$87.5M

$175.0M

$262.5M

$350.0M

Cost ($Million US)

$5.2M

$215.0M

$350.0M

Earth Simulator (Japan) Los Alamos Lab (ASCI Q) Virginia Tech

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 22

Fig. 9 - World’s fastest 3 supercomputers (2003)

Fig. 10 - Cost in millions for the 3 fastest supercomputers in the world

So not only is grid computing powerful, but it is also much more cost efficient than cus-

tom built supercomputers. Virginia Tech had the aspirations of becoming one of the top

30 research universities in the United States, and now with the fastest university super-

computer in the world, they are a step closer to this goal. Attracting researchers to work at

the university is now much easier as all the infrastructure is in place for compute intensive

research.

What Virginia Tech has done is absolutely amazing, but how much more power would

they have been able to harness if they had been able to add the power of every single PC

in the University as auxiliary network? Obviously connecting up every odd machine to

their existing grid wouldn’t necessarily assist its speed as issues like network bandwidth

and latency must be considered. For example, computers across campus would not be

able to work as quickly as systems in their PowerMac cluster, and would bog down the

system as the grid would always be waiting on these often much slower machines to finish

processing. However, it should be possible to take all of these extra machines, and using

software such as Condor or Apple’s Xgrid connect them in such a way that they could

perhaps add a 3 -5 teraflop addition to their already existing grid. This would be a very

interesting project to engage in, as not only would it test theories of cross-platform com-

puting, but it would also test concepts such as grid integration. In this scenario, these two

grids could be informally connected for administrative purposes, and the second network

could largely be used by secondary researchers such as graduate students and under-

graduates who may not be given access to the supercomputer.

 The previous paragraph briefly touched on Apple’s Xgrid software as a possible system for

cross platform grid computing. Xgrid is a brand new player to the grid market that has

yet to make a 1.0 release, and is of right now still a preview technology. Xgrid comes with

two types of software packages intended for different uses, one is named Xgrid and the

other is known as Xgrid Blast. Xgrid Blast is Apple’s open source biotechnology applica-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 23

tion and will only be quickly discussed in this paper. Blast is used by life science research-

ers to find matches in DNA and protein sequences. For example Richard H. Scheller PhD

who is vice president of Research at Genetech uses blast to query DNA sequence files for

matches against multi-gigabyte genomic databases on a cluster of four dual-processor

Xserves [14]. Xgrid Blast connects to existing Xgrid clusters, and provides much more

complex reporting and managing than that of the simple Xgrid application, however it is

limited strictly to biotechnology research, and as such it will not be a major component of

this research paper. The Xgrid application itself however is capable of much more than

dissecting gene sequences and even has very preliminary linux support. Xgrid is a compu-

tational clustering technology and is designed to bring the power of grid computing to the

masses. Xgrid allows anyone to interconnect servers, workstations, and dedicated ma-

chines to an Xgrid cluster, and does so in a way which is simple and easy to configure and

distribute. Xgrid uses technology similar to Condor’s “idle” technology where computers

which are inactive will only compute in the grid when they have become idle. This allows

an individual or an organization to maximize grid performance, without affecting any of

the users connected to the grid. The market is screaming for more powerful grid tools,

and Xgrid delivers this in a way that only Apple could invent.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 24

Fig. 11 - A screenshot of the Xgrid Blast application with one computer at 1.5GHz connected

PROJECT JUSTIFICATION:
With the rise in demand for more and more computational power, particularly by large

research institutions, the dawn of grid computing is upon us. Gone are the days where a

central mainframe system would do all the work for scientists, 3d artists, and mathemati-

cal theorists. Certainly these mainframes will still be kept and will still do computation,

but computers located throughout the organization working together or separately will do

a much larger amount of computation. Grid technology is very much a cutting edge topic

and the software that is available to do Grid computing is still very much in its early

stages.

In every organization there are computers of all speeds, and they often sport different op-

erating systems. Take for example a typical University. There will be Windows systems,

Macintosh systems, and of course the odd Linux box (particularly in computer science

departments). The problem posed is that in order to implement a grid that will do compu-

tations on all these varying systems, the grid must work in a cross-platform manner. The

whole purpose of this project is to explore the possibility of cross-platform grid comput-

ing, and determine if it is not only feasible, but also a much faster way of doing large tasks

that would take a single computer much longer to compute.

This grid will be tested through the use of Pov-Ray. Pov-Ray is a high-quality, freely avail-

able ray-tracing software package that is available for PC, Macintosh and UNIX plat-

forms. Pov-Ray allows a programmer to create complex graphics through the use of its

own custom language. It employs a concept known as ray-tracing to do this which allows

a programmer to create light rays. These rays custom programmed into specific scenes

and can be refracted by mirrors, glass, or undergo various other contortions, all of which

result in a single pixel of the final image. Obviously this is a very intensive process that

would take a single CPU many hours (or days) to finish; however, this paper suggests that

this time can be shortened greatly through employing a grid. Benchmarks will be pro-

vided between processing time difference of an individual computer versus the processing

time over the grid.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 25

Brief Descriptions of Project Products:
• An overview of grid computing and its benefits

• Review of possible Grid Platforms (Xgrid and Condor) (time permitting)

• A review of possible Linux distributions that will be used in the project

• An analysis of the Xgrid interface

• Install Linux and Mac OS X

• Implement the Xgrid Agent on the Linux Platform

• Implement the Xgrid Controller on OS X

• Create a remote retrieval script for distributing files

• Create a Pov-Ray scene for benchmarking the grid

• Install and configure a 12 port switch for use by the Grid

• Add as many systems as possible to the Grid

• Determine optimal job size for Pov-Ray renders

• Explore the use of SSH for remote administration of the Grid (time allowing)

• Provide a brief report on the future of Xgrid and grid’s in general

• Provide some recommendations for how this may be used in a university setting. (Time

providing)

Summary of Project Deliverables:
(See Work Breakdown Structure and Gantt chart Appendix 12)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 26

Determination of Project Success:
The success of this project will be defined by the analysis that the project provides on

cross platform Grid Computing. As this field is still very cutting edge at the moment there

is no way to anticipate whether a Pov-Ray scene in a cross platform manner can be ren-

dered. Thus the success of the project cannot be simply based on the ability to success-

fully render something in a cross platform manner. Rather, determine the project’s success

through its ability to provide exposure on cross platform grid computing, its successes,

failures, and its direction.

Definition of Hardware Resources:
The following hardware resources have been acquired for the scope of this project:

• One 1.5 GHz Powerbook G4 w/ 512MB RAM and 128 MB Video

• One 1.2 GHz iBook G4 w/ 512MB RAM and 32 MB Video

• One DUAL 1.2GHz PowerMac G4 w/ 1,5 GB RAM and 64 Mb Video

(Sketchup Only)

• One 2GHz AMD PC w 1GB RAM and 128Mb Video

• One 1.6 GHz AMD PC w/ 256 mb RAM and 32Mb Video

• One 400 MHz PC w/ 386Mb RAM and 8 Mb Video

• One 200 MHz PC w/ 96Mb RAM and 8Mb Video

• 12 Port 10/100 Switch

• 4 Port 10/100 Wireless Router

More hardware may need to be acquired if adequate performance results cannot be ob-

tained. There are at least 2 partially built systems, which are available and would require

processors, memory, video cards, and hard drives in order to become functional. In addi-

tion to this 5 or 6 additional computers may be loaned from friends if necessary.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 27

Definition of Software Requirements:
Xgrid requires Mac OS X 10.2.8 or later (including 10.3), with a minimum of 128MB of

RAM but 256 Mb is recommended. The package may be freely downloaded, and is easy

to install.

The Xgrid agent for Linux requires a Linux installation with the following packages in-

stalled:

1. libxml2

2. glibc

3. roadrunner (the BEEP library) and its required library glib-2.0 (and libxml2)

4. Xgridagent.c Xgridagent.h Xgridagent-profile.c Xgridagent-profile.h

 Xgrid.config.xml (see below for download)

In order to install Pov-Ray the following are required:

Linux - Requires a glibc-2.2 based GNU/Linux system running on x86 hardware. In or-

der to have Pov-Ray run in an identical manner to OS X it may be necessary to install

DarwinPorts.

Windows - The 32-bit version requires at least Windows 95, Microsoft HTML Help and

at least Internet Explorer 3 (for the HTML Help engine). Internet Explorer 4 or later is

strongly recommended so as to ensure the correct functioning of the documentation.

Mac OS X- Requires at least Mac OS 9.2 or at least Mac OS X 10.2.8. Using Mac OS

9.2.2 is strongly recommended. For Mac OS CarbonLib 1.6 is required.

In order to install WebDav the following are required: A working Apache 2.0 installation

with sufficient permissions to edit the httpd.conf file. Some modules may also be re-

quired.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 28

XGRID OVERVIEW

Introduction to Xgrid
Xgrid is a Mac OS X application designed to bring “Apple’s legendary ease of use to par-

allel and distributed high-performance computing” [15], or as Steve Jobs often states,

high performance computing built for “mere mortals.” One of the biggest problems in

the grid computing industry is that installing and configuring your own grid can be a very

complex and time consuming process. Apple’s Xgrid technology is aimed squarely at the

backyard researcher, graphic artist, or scientist, but can scale remarkably up to levels that

major researchers need. This technology is still in its preview (beta) stages, but is expected

to be at a stable release within the next 6 months.

In brief, Xgrid allows anyone to take a group of nodes (individual computers) and net-

work them into a cluster or grid. Users on the cluster are allowed to create long running

computations known as “jobs” and submit these jobs to a controller which is a dedicated

machine on the network which handles the management of these jobs. Xgrid can then

create multiple tasks for each job, and distribute those tasks among multiple nodes. A con-

cept known as “Desktop Recovery” is used to describe the action of coupling individual

computers into a computational grid when those machines would normally be idle. Desk-

top recovery is a big feature of Xgrid as it allows computations to run only when those

machines would otherwise be idle, and as a result does not impact the individual who

would normally be working on that machine. Xgrid also allows systems to run as dedi-

cated nodes, which means that they will dedicate 100% of their processing power to jobs

as they are placed on the grid. This combination of desktop recovery and dedicated ma-

chines allows a researcher or individual to maximize the use of available processing power

and dedicate it to their work.

As far as constraints and limitations are concerned theoretically Xgrid has none. In the-

ory, Xgrid should be able to allow any number of systems to connect to the network, re-

sulting in N Gigahertz of effective power. During the Xgrid preview however, the maxi-

mum number of machines that can connect cannot exceed around 300-500 Ghz. Al-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 29

though this is definitely a fairly low figure in terms of raw computational power, for the

average lab, teacher, student, or researcher, the power that Xgrid can harness is more

than adequate.

If more computing power than this is required, other grid projects such as the Condor

Project are designed for large-scale computational grids. They feature more advanced

administrative tools, flexible resource management utilities, and built-in features like

checkpointing which allow individual jobs to be stopped, and resumed by a completely

separate machine. These grid projects are designed to be fully featured frameworks for

grid deployment in large computing environments and are complex to setup, complex to

maintain, and require in-depth command line knowledge.

Although Xgrid does not provide all the functionality that projects such as Condor, or

Globus [16] have to offer, it does have much that these projects do not. Some of these

current benefits include:

‣ A fast and efficient client setup process that requires little configuration in order

to allow a single individual machine to participate.

‣ GUI based grid submission tools, and GUI based grid monitoring.

‣ Command line knowledge is not necessary, although it can be used by those who

are more comfortable with it. Xgrid is capable of being fully managed through a

terminal.

‣ The utilization of Apple’s Rendezvous 2 technology which permits individual

computers on the network to connect to a controller without having to know the

IP address.

‣ Hiding complex issues such as data distribution, job execution, and result aggre-

gation from the user.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 30

2 See Glossary [2]

‣ Using Xgrid’s BEEP3 framework it is theoretically possible to secure controller/

client communications through a SSL tunnel.

‣ The ability to create your own customized plugins that save both time in job

submission, and allow a grid administrator to quickly distribute a customized

task.

‣ Allows for a diverse range of input and will permit any UNIX style operation to

be run.

‣ Aims to support all types of computational needs ranging from graphical ren-

dering to scientific and mathematical calculation.

‣ Using cocoa it is possible to integrate Xgrid right into your applications to help

with computing intensive tasks.

Xgrid in Action
Despite Xgrid is still a preview technology, its revolutionary approach to grid computing,

and its ease of use, have made it a success in many academic fields. There are currently

many ongoing research projects around North America which are using this technology,

and are integrating it right into University laboratories, a few of these projects are listed

below.

Xgrid at Stanford University - Dr. Charles Parnot, and Brian Kobilka, M.D work in

the Molecular and Cellular Physiology department at Stanford and are utilizing Xgrid to

accelerate a better understanding of pharmacology. They are currently running large cal-

culations that need massive amounts of computing power to model the conformational

changes of the “beta 2 adrenergic receptor.” This is done through modeling G-protein

coupled receptors. This complex research could provide further understanding on how

these receptors could react to medications used to battle various diseases related to the

heart, coronary system, and asthma. Naturally since this type of work requires the proc-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 31

3 See Glossary [3]

essing of enormous volumes of data, and with numerous parameters per model, this task

is ripe for a grid. Using the combined power of around 200 - 400 Apple computers lo-

cated all over the world [Fig. 12] they have been able to reduce calculation times for mod-

els from 1 year to 1 week [17]. Currently they have between 100 - 200 agents located

within North America, and and estimated 200 - 300 agents in Europe. See the diagram

below for a depiction of agent locations:

Xgrid at Reed College - Under the guidance of Professor Richard Crandall, and given

government funding, the students at Reed College have utilized an Xgrid in their studies

in Epidemiology. The computational team was part of a much larger overall research

team, and was responsible for the construction of combinational models of epidemics

with a particular focus on an original theory of the fractal character of survivor sets. The

team has written software to use these models, and has produced a paper on the implica-

tion of this research on fractal characteristics on vaccination strategy. Their grid ranged

in size from 10 Ghz to 100 Ghz and managed to reduce their computations from an esti-

mated 30 CPU years to something the length of a “CPU summer” [18].

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 32

Fig. 12 - The locations of major contributers to Xgrid at Stanford

North Carolina State University - Sammie Carter has been working on Grid comput-

ing for the student masses, and has a very fresh perspective on what grid computing can

be. “Wolfgrid is a project whose aim is to build a computing community at NC State

where the individuals are the computer. In this community everyone helps, supports, and

sustains each other. It is a project hoping to bring people with vastly different computing

needs together. NC State intends to use this system to support the various demands of

both scientists and artists, while encouraging communication and collaboration within

the Wolfgrid community. Wolfgrid aims to be a community super computer where the

community is the computer” [19]. Their system currently is running at around 20 - 30

Ghz and consists of systems all over the campus. Students donate spare CPU cycles on

their computers to assist their colleagues on research projects.

University of Utah - James Reynolds has created a grid with speeds of up to 500 Ghz

which has been made available to both arts and science students. The arts students have

used the grid for rendering 3d scenes they have created using a very popular graphics

program known as Maya. The science students have used the grid for working on specific

research and projects, and have found the power of the grid to be a definite aid in their

studies.

Simon Fraser University - SFU has employed Xgrid to take advantage of the unused

CPU time available on Macintosh computers throughout the university. As of May 2004

SFU’s Xgrid cluster consists of over 80 machines, running at over 55 GHz combined on

the Xgrid Tachometer [20]. Research using Xgrid has so far been concerned primarily

with problems in computational mathematics where solutions are "embarrassingly paral-

lel", such as stochastic and independent exhaustive searches. Some of the projects have

included turan conjecture, fermat number factoring, Mahler’s measure of polynomials,

and least autocorrelated binary sequences.!

Under the Hood of Xgrid
The technology behind Xgrid is not much different that many other grids that can be

found today on the market, however Apple’s implementation of this technology is quite

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 33

unique. In order to discuss further how Xgrid works we must first take a look at the basic

manner in which Xgrid functions. Below [Fig. 13] is a schematic of the roles which com-

puters can take within an Xgrid.

As we can see on the previous page their are three types of roles which computers can

take: agents, controllers, and clients. These components each assume different roles in the

formation of an Xgrid and each is an essential part of creating the grid.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 34

Fig. 13 - The roles and interactions of computers within an Xgrid

Agents:

Agents are the workhorse of the Xgrid, any computer running either Linux (unsup-

ported) or Macintosh OS X (supported) can run as an agent. Under OS X the agents are

located at /Library/StartupItems/GridAgent/GridAgent, and under Linux they are

available in whatever installation directory you specify. Agents are responsible for receiv-

ing jobs from the controller, processing the jobs, and returning the jobs to the controller

again. Agents can either run as dedicated agents, meaning that they will always accept

jobs, and will dedicate maximum processing jobs to those jobs upon their arrival, or

agents can run in screen-saver mode, meaning that they will only accept jobs if the user

has been away from the computer for a specified period of time. Linux agents at the time

of this report unfortunately are still very experimental and can only be run as dedicated

agents. Agents in an XServe cluster as demonstrated in the middle box in the above illus-

tration (Fig. 13) are also capable of joining the Xgrid. In order for a OS X system to run

as an agent it is necessary to specify how the agent will connect. It is important to note at

this point that the agent can be forced to provide a password to the controller as part of a

mutual authentication process. This is done through the agent password preference pane

of Xgrid.app. Connecting to the controller can be done in three different ways:

(1) Binding to the first available as discovered through Rendezvous.

(2) Binding to a specific service name (ex. domain.com)

(3) Binding to a specific host (ex. 192.168.0.100)

Once the agent has connected to the controller and begins processing a job it reports its

processing speed to the controller which in turn reports it to the client for output on the

tachometer (See Clients section for details). This is done either through a call to /usr/

sbin/system_profiler under OS X or through /install/dir/Xgridagent/Xgridagent.xml

under Linux.

In terms of what is copied to agents the command will be copied to a temporary directory

located in: (Ex.) /tmp/xgagent.GSIOZ6o4/bin/sh and runs under the user “nobody”.

The working directory which is used to hold temporary files or downloads is located in:

/tmp/xgagent.bUDiNL4g . This is very important to note because it is sometimes nec-

essary to check the status of these folders in order to inquire as to why an agent crashed,

or whether certain files downloaded correctly.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 35

Clients:

Any OS X system can be an Xgrid client if it has the Xgrid application installed, and has a

functional network connection to the grid (A password may also be necessary). The cli-

ent provides access to the controller, and allows any local user to submit jobs to the con-

troller using either the command line Xgrid command, or a graphical user interface. The

user can define any number of parameters through the client (See Appendix B. The

Xgrid User Interface) and once submitted, these are sent to the controller. When the job

has been completed the client is notified and can retrieve the results from the controller.

One of the best features of the client is the ability to create a custom job called a “plug-

in” that is stored on the controller, and can be utilized later to run similar instances of

the same type of job. Clients can connect either through Rendezvous or IP address.

Controller:

The Xgrid controller is the heart and soul of the grid as it is responsible for managing

communication and resources of all the available agents on its cluster. The controller

receives job submissions from the client(s) , breaks them up into tasks, dispatches each

task to an agent, and provides the job submission results back to the client. There can

only be one controller per grid, however there are allowed as many controllers per sub-

net as there are IP addresses. Although Apple claims that there is no theoretical limit to

the number of agents that are permitted per controller, there is certainly a practical limit

which is based partly on network bandwidth, the extent to which a job can be paralleled,

and of course the issue of the controller itself crashing which seems to happen at random

intervals from time to time. That mentioned, Apple has gone on to state that no control-

ler can currently handle more than 10,000 connections which is quite confusing as it

certainly isn’t the “no theoretical limit” that they advertise. The controller process can

be found in the location: /Library/StartupItems/GridServer/Gridserver and can be

executed via the command line from that location. The controller listens on port 4111 and

possibly other non-privileged ports, and broadcasts via Rendezvous. The controller is

also capable of giving passwords to agents, or requiring passwords from clients which is

really its only form of security at the present point in time.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 36

Xgrid Security
Now that this report has considered some of the basics of how Xgrid works, it needs to consider

another aspect of grid computing that has been briefly mentioned in the some of the above sec-

tions, and that is the issue of security. As mentioned in the agent section, Xgrid processes run on

the agent as the standard UNIX user “nobody”, and can execute anything that the world user can

execute including (but not limited to) applications or scripts located in the following directories:

•/Applications

•/bin

•/sbin

•/usr/bin

•/usr/sbin

This “nobody” user can read anything the world user is typically allowed to read which can in-

clude very confidential files such as those located in the /etc directory. This directory contains

things like hostconfigs, authorization preferences, and http server configurations. Things only

get worse from here as the world user is allowed read access to preferences located in the /Li-

brary folder, and even personal user folders such as those located in /Home or /Users. The

world user is also given write permissions to anything located in /tmp, /var/tmp, and /Volumes.

So what does all this talk about read and write access mean in terms of actual security vulnerabili-

ties? Well the answer is that unless you are running in part of a highly trusted Xgrid cluster, join-

ing an unknown Xgrid cluster as an agent would certainly be a very foolish thing indeed as any

administrator could write a script that could easily utilize the grid’s distribution methods to com-

promise your system, or acquire personal information about you. The Xgrid agent is provided

with very little protection from a malicious individual utilizing a Xgrid client, and as such it is

highly recommended that you only join an Xgrid cluster when you are absolutely positive that the

administrator is responsible, and their networks are properly secured. Hopefully this will change

as Xgrid matures into a full 1.0 version, but the current preview release 2.0 does not incorporate

any security as far as file permissions go. In terms of security available to the controller and the

client, all connections to the controller can be required to be authorized by a password which is

encrypted. Controllers can force clients to provide these passwords prior to being able to submit

jobs, and as of the date of this research paper there are no known exploits to bypass these restric-

tions. The remaining content exchanged between the controller, agents and clients is not en-

crypted, but this report has discovered that it should be theoretically possible to pass Xgrid jobs

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 37

through an SSL connection as SSL is supported within the BEEP framework that Xgrid runs on,

but unfortunately there is no current way to activate it.

How Job Submission Works
When a client submits a job to Xgrid there is a particular order of operations that occurs.

In order to best demonstrate how job submission

works it is best to provide an example. In the example

we will run the command /usr/bin/cal. This will run

the standard Unix calendar command, and given no

arguments it would normally print out a list of all the

days in the month.

In our case though we will be passing parameters to it so that more than 1 computer can

work on it at a time. For a list of the arguments we are going to pass, see [Fig. 14] below:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 38

Fig. 14 - The submission of cal (calendar) jobs to Xgrid

As it is seen here, the cal command is going to be passed the parameters 2000 to 2010 by

1. Hence in this particular example there are 11 jobs. Since each agent on the grid will

only receive 1 job, each agent may have to connect more than once depending on how

many agents are connected. Once the submit button is pressed a confirmation box will

appear to tell us that we are about to submit 11 jobs and that the input size for these tasks

is 225280 bytes, and do we want to submit the job. Upon pressing submit the following

actions will occur:

1. The client compresses everything inside the working directory into a tarball. In our

case nothing is inside of this directory but normally you would copy your script com-

mand to that directory unless it is available on every machine like /usr/bin/cal is.

2. The tarred data is sent with all the folders in the hierarchy (so if there are any sub-

folders inside the working directory they will be submitted as well) to the first agent

along with the first argument.

3. Each additional agent will also receive a tarball of the working directory along with

the next argument. This loop until there are either no more agents available, or no

more arguments for additional agents to take. Agents will take these jobs in order of

speed, so in our example if we have six (2 GHz) agents, and five (1 GHz) agents, and

five (500 MHz) agents we will see that first the six (2 GHz) Gigahertz agents will take

jobs, and then the five (1 GHz) agents will take jobs, but then all the jobs will be taken

so the 500 MHz machines will receive no jobs. XGrid identifies the speed of connect-

ing agents through a XML configuration file that specifies the speed in MHz of the

processor of the agent. Negotiation of which agents get tasks is completely moderated

by the controller. This is done so that jobs will be computed using the maximum

power of the available resources. For much more complex jobs this becomes even

more apparent as slow agents will often bog down the completion of tasks.

4. The agent receives the tarball and extracts it to /tmp/xxxx where x is a string of let-

ters unique to that particular job. This folder is then the working directory for the cur-

rent machine.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 39

5. Since the tarball will extract, in our case the actual working directory will be /tmp/

xxxx/Users/myuser/Desktop/work_dir_cal

6. The command executes from this working directory and takes the given argument

and passes it to the executable.

7. Once the task is done, the output is captured to STDOUT and is placed in a text file

and returned to the server. If there was any further output (Later in the paper we will

look at Pov-Ray rendering) it will compress everything in the folder up in a tarball and

upload that back to the controller.

8. A button is displayed on the

client indicating that the job is

done and the results can be

viewed. Upon clicking this button

it will then open the destination

directory (In this case it is ~/

Desktop/dest_dir_cal) and will

display the results. If you are not

using the command-line client,

the results are simply found in the

destination directory specified.

See [Fig. 15] for sample output of

the first job.

There are also several ways in which to submit jobs, and there are many different types of

jobs that can be submitted. The next section will look at some of these job types, and

what each type has to offer.

Job Types
There are several methods for submitting your jobs to Xgrid. Once the client has been

started a screen will be presented for a new job. At this point the user will see a listing of

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 40

Fig. 15 - Sample output of the first cal job.

different job types that the grid can perform. Notably there are 5 primary job types for

submitting jobs: Shell, Xfeed, Create Custom Plugin, Factor, and MPILaunch. There also

is a Mandelbrot job which computes complex fractals but this is really used much more as

a testing measure for the grid than as an actual submission method worthy of mentioning

here. Each of these 5 methods serves a different purpose, and each provide different func-

tionality.

The Shell job type is best used to demonstrate a single task being submitted to a single

agent. The user can specify any standard Unix command, and upon submitting the

command, the fastest agent currently connected to the grid will retrieve the job and exe-

cute it. Upon my first time running this job type, I had assumed that once I submitted a

unix command to the grid that all agents within the grid would run the job, however it is

strictly only the fastest computer on the grid which will retrieve and execute this task. In

fact for all tasks that are not passed to the controller with arguments, the fastest computer

on the grid will always grab the job.

The XFeed job type allows you to specify either a command, or a path to a script which

you have written. XFeed is different than Shell jobs in that it also allows you to specify ar-

guments which the command or script will take. Arguments can either be a literal, a

range of integers, or a random integer. Arguments can also be stacked so, for example,

you can specify both a literal, and a range argument when you pass the command to be

executed. It will executes everything in sequence, and in the example it would deal with

the literal first, before processing the range arguments. Both ranges and random integers

allow you to specify the starting value, the finishing value, and the amount to increment

each value by. It is important to note here that if you specify a range argument (or a ran-

dom argument), and provide a range greater than one, that each agent on the grid will

retrieve a single argument and process it. This is a key concept in grid computing, and

one that took a considerable length of time to discover. I had previously assumed that

somehow the controller knew how to take any given argument and divide it up between

the connected agents, but in fact single arguments will only ever be processed by single

agents. Agents cannot share arguments, and cannot just simply specify a command with

no arguments and expect that it will run on every machine on the grid. Even if it could

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 41

do this, there really wouldn’t be much point to this functionality as each agent would re-

turn the same results so all that would end up happening is that each agent would return

identical (or very nearly identical) results to the controller depending on the nature of the

command specified. XFeed also lets you specify the location of a source executable script

if you are using one, a location for inputs, and a location for where you would like the

output of your commands to go.

The Create Custom Plug-in job type is perhaps the most powerful of the available meth-

ods, and it allows you to submit your own complex scripts or jobs to the controller. Plug-

ins that you create can be saved, and recalled later so you do not need to retype com-

mands. Since every Xgrid task that you create is a command-line string that is distributed

to agents, providing the functionality to save these custom strings is a great way to make

complex tasks accessible in the future whilst requiring a minimum of input required back

from the user. Bash, Shell (sh), Python, or Perl scripts are all fully capable of being run via

either XFeed or the Custom Plug-in and can significantly extend the power of Xgrid

tasks. In fact, plug-ins provide much of the same functionality that XFeed jobs provide,

but extend that functionality by allowing a much more diverse range of allowable argu-

ments. For a more complete listing of every option a custom plug-in is capable of submit-

ting, please see Appendix 2 and look at the page discussing the Xgrid custom plug-in.

The Custom Plug-in was used extensively in the creation and testing of Xgrid for this re-

port.

The Factor job type is a very simplistic job that is best used for grid testing purposes. The

factor job allows you to submit a batch of factoring tasks as a single job. A factor job takes

three parameters: mod, exp, and machine passes. It then computes the results based on

the data you enter in the form of: 2^exp + mod where special efficiency accrues when

mod = -1 (Mersenne numbers) or mod = +1 (Fermat numbers). For example, when the

arguments mod:1, exp: 128, and machine passes: 4 is entered, there are 4 text files that

get generated and each contains the resuts of the factor being run. An example of the fist

machine pass can be found below:

Factoring on Praetorian-OSX.local:

340282366920938463463374607431768211457

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 42

Sieving...

Commencing Pollard rho...

Commencing Pollard (p-1)...

Commencing ECM...

Choosing curve 1, with s = 1578126186, B = 1000, C = 50000:

Choosing curve 2, with s = 737139265, B = 1000, C = 50000:

Choosing curve 3, with s = 490722994, B = 1000, C = 50000:

Choosing curve 4, with s = 1692156077, B = 10000, C = 500000:

Choosing curve 5, with s = 1402156263, B = 10000, C = 500000:

Choosing curve 6, with s = 1299376378, B = 10000, C = 500000:

Choosing curve 7, with s = 2114855085, B = 10000, C = 500000:

Choosing curve 8, with s = 864277417, B = 10000, C = 500000:

Choosing curve 9, with s = 1310676679, B = 10000, C = 500000:

Choosing curve 10, with s = 651493669, B = 10000, C = 500000:

Choosing curve 11, with s = 650143996, B = 100000, C = 5000000:

Although this particular job type is not very useful in anything to do with real world ap-

plications, it does demonstrate one of the many ways in which Xgrid can be used, and it

is useful as a benchmark.

The MPILaunch job type is the last of the useful job types and allows a user to run an

Massage Passing Interface (MPI) job by specifying an executable compiled with MacMPI.

MPI is best used when communication between agents is necessary, and as such it is a

very powerful tool. The solution is MPI, the Message Passing Interface. Developed over

the last several decades as an alternative to shared memory architectures (such as

OpenMP), MPI enables developers to efficiently program "tightly coupled" algorithms

which require nodes to communicate during the course of a computation. MPI is used by

many distributed programmers as an alternative to shared memory architectures such as

OpenMP and allows developers to create highly dependent algorithms which require

agents to communicate throughout computations. MPI consists of a standard set of API

calls, that can be implemented as a cross - platform communication library that will man-

age all aspects of communication and data transfer between agents. MPI provides a layer

of abstraction that works well with existing networking architecture (ex. Ethernet, Myri-

net, InfiniBand), while allowing developers to recompile their programs for any platform

and hence providing a layer of cross platform support. Different implementations can be

run either standalone, or embedded within scheduling solutions like Xgrid. Although

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 43

MPI is outside the scope of this research paper, it is important to note that Xgrid’s ability

to execute these tasks can really add significant power to tasks that are dependent on one

another. MPI and Xgrid are an excellent combination for many scientists and researchers.

The feature set and job submission tools that Xgrid brings to table of grid computing is

quite significant, and will only increase with further releases of this technology. While us-

ing these tools, one will quickly notice that Xgrid also takes one of the weakest elements

of the field of grid computing which is the usability and the user interface aspect, and

transforms it into one of its strongest elements. Xgrid is truly a breakthrough in grid us-

ability and the following section will detail more on how the user interface works for

Xgrid.

The Xgrid User Interface
As with all things that are designed by Apple, Xgrid has been designed with the end-user

in mind. Other grid applications such as Condor require command line configuration or

have extremely complex interfaces which certainly hinder administrative tasks and con-

fuse users. Xgrid has been chosen primarily for this project because it takes something as

complex as grid computing, and breaks it down into an application that is both robust

and easy to use. Alan Cooper, author of “The Inmates are Running the Asylum” states in

his book that “The essence of good interaction design is to devise interactions that let us-

ers achieve their practical views without violating their personal goals” [21]. In the case of

most users, they want to be able to do their work without feeling inadequate or stupid.

Complex and confusing interfaces achieve just that, but Apple’s Xgrid interface is surpris-

ingly simple considering the wealth of power available at your finger tips. This is technol-

ogy that everyone can use, and it doesn’t require a PHD in computer science in order to

figure out, which is the beauty of it. For a more thorough overview of the Xgrid user in-

terface see Appendix 2. The next section details how to implement this Xgrid on OS X.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 44

XGRID IMPLEMENTATION

Implementing Xgrid on OS X
Prior to discussing this paper’s implementation of Xgrid, and how this papers has used

this technology to assist in real-world tasks, it is worthwhile to point out that until I started

working on this project I had no experience in any of the technologies that have been

used. In fact the only thing that was remotely familiar with me throughout the entire

course of the project was the general use of the Linux operating system itself. I have been

using OS X since January of 2004, and have used Linux since July of 2003. I have never

touched anything to do with grid technology, bash scripting, perl scripting, CGI-scripting,

XML, C, GCC compiling, 3d rendering, architectural CAD, customized Apache server

configurations, or writing code for distributed environments. Neither have I ever written a

report so extensive or complete as I hope this one will be. So needless to say just about

everything I am about to embark on is completely foreign to me.

As this project was constructed from the ground up, I started off with only 2 operational

systems, both running Mac OS X. The primary focus at this point was to get the network

operational, and then setup Xgrid to attempt to render a single Pov-Ray file. One system

was designated as the primary Xgrid controller is a 1.5 GHz PowerBook G4 (Currently

one of Apple’s top of the line laptops). The other system was a 1.2 GHz iBook laptop

which was designated as a full time agent. Both of these systems were connected to a 5

port DLINK 504P Wireless-G router which had been purchased in December 2004 along

with a high gain antenna. This router was purchased specifically for the purposes of this

project, as I was quite interested in seeing how the grid could perform under wireless

conditions. The omnidirectional high gain antenna was purchased to increase the signal

strength of the router as I initially ran into connectivity issues where the laptops would

not be able to connect to the network properly due to poor network signal strength. As

with all wireless networks, security is always a consideration, and as I wanted my control-

ler to function wirelessly I took the time to properly setup WEP encryption using a 128-bit

hex key. This was done manually through my routers’ web based interface. Each laptop

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 45

was then set through the Apple’s Airport interface to connect to the router, and utilize the

WEP password that I provided. After reading several online articles on wireless security it

became apparent that using a very simple WEP key was poor practice so I found an open-

source WEP key generator, and set a password that consisted of much more irregular

characters. I also wanted to lock the network down further by only allowing systems to

lease IP addresses if their MAC address matched the MAC address filter on the router.

Unfortunately due to DLINK’s poor support for network security this feature refused any

computer access to the router as long as WEP was enabled. So the option at that point

was to either run an unsecured wireless network with MAC address filters, or a WEP en-

crypted wireless network with no MAC filters. I chose the latter because I would much

rather run a secured wireless network than one that anyone could join if they could clone

a MAC address. As this report is not a report on wireless security further details on this

setup will not be disclosed, however these concerns were worthy of brief mention as they

are an aspect of our implementation.

The next stage of the setup for OS X involved downloading Xgrid from Apple’s High

Performance Computing website here: http://www.apple.com/acg/xgrid/ . Once this

was downloaded Xgrid can be installed by double clicking the downloaded .dmg. It will

then auto-mount the Xgrid installation volume to your hard drive, and by double clicking

on the Xgrid installable the setup process will begin. To see a list of what folders and files

Xgrid creates please see Appendix 3.

Once Xgrid is installed we can start our grid. The Xgrid controller is used to start the

grid services and can be started either through the Xgrid preference pane or through the

command line by running:

%sudo /Library/Xgrid/Scripts/server_on

%sudo /Library/Xgrid/Scripts/server_start

The agents can be started either through the Xgrid preference pane, or through the

command line by running:

sudo /Library/Xgrid/Scripts/agent_on

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 46

sudo /Library/Xgrid/Scripts/agent_start

The agents can either bind to the first available controller through Rendezvous, or to a

specific IP address. In this case it will just bind to the first available controller since there is

only one controller running. It is worthwhile to note here that sometimes the controller

crashes, and I have found that specifying the controllers’ IP address to be the only way for

the agents to reconnect once the controller is restarted. For exact details on how to start

the controller or agent through the GUI see Appendix 2.

Upon getting the grid started I ran through some sample jobs such as Mandlebrot (which

computes complex fractals) and I ran the calendar job (/usr/bin/cal) that has been al-

ready discussed earlier in this paper. These methods are great for testing preliminary con-

nectivity of the grid, and for establishing that all the OS X agents can in fact retrieve jobs.

I wanted to determine very early on that I could in fact render Pov-Ray files across the

grid, and as such I realized that I needed to obtain a command line version of Pov-Ray

that I could use on OS X. The reason for this is that for Xgrid to distribute jobs a set of

command line parameters need to be passed to the agents to process, and if Pov-Ray

cannot run via the command line, the agents cannot run Pov-Ray jobs. Through research

found on both James Reynolds website (University of Utah), and Daniel Cote’s website

(University of Toronto) it was hinted that DarwinPorts needed to be installed in order to

obtain a command-line version of Pov-Ray. DarwinPorts is a command line application

that can fetch open-source software that is “ported” specifically to the PPC (Power PC)

platform. A large amount of Linux software has been ported to OS X, and is available

through DarwinPorts. For a more complete overview of DarwinPorts, and its installation,

see Appendix 1. Once DarwinPorts was installed it was only a matter of running the fol-

lowing command in order to install Pov-Ray:

%port install Pov-Ray

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 47

Now that Pov-Ray is

installed I wanted to try

rendering scenes on the

homogenous Xgrid. To

do this I created a cus-

tom plugin that utilized

the command /usr/

local/bin/Pov-Ray and

took as an argument a

folder of Pov-Ray files

[Fig. 16]. These Pov-

Ray files were just sam-

ple scenes that are in-

cluded with any installa-

tion of Pov-Ray. The two systems then proceeded to render the scenes I specified, and

everything was returned to the destination directory. I noticed at this point that the output

included not only the Pov-Ray files and the text files of the command output, but also a

copy of the working directory and the folder I specified in the arguments list. This is be-

cause a tarball of the entire working directory is returned to the controller, which the con-

troller then untars to the destination folder. The discovery of what exactly the controller

does, and how the agents respond was key to understanding how Xgrid could be imple-

mented on Linux. Although it appears that setup and configuration of Xgrid on OS X is

fairly straight forward it still took a good deal of time to install the tools necessary to in-

stall Pov-Ray and the setup of both systems and the network hardware took close to 10

hours. That being said, the ease of setting up Xgrid on OS X is certainly easy enough for

any enthusiast to follow through with the help of a good manual. Next, this paper will

look at taking Xgrid and implementing it in a cross platform manner.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 48

Fig. 16 - The submission of a custom Pov-Ray job

Installing a Cross Platform Xgrid
The task of attempting to setup a cross platform Xgrid is very much a wild and unex-

plored frontier. It is wild simply because the agent that is available to Linux architectures

is still very much in its experimental stages, and is still a prototype. The agent was devel-

oped by Daniel Cote (PhD) who works at the Biophotonics group at the Ontario Cancer

Institute (University of Toronto) with help of the Xgrid team and Ernest Prabhakar at

Apple. This agent is not supported by Apple or Mr. Cote, and is merely provided as semi-

functional beta/proof of concept. The inspiration behind creating the agent for Unix ar-

chitectures was so that researchers who do not have access to a large number of Apple

computers could use their PC’s to join the grid. The controller still must be an OS X

based machine, however there is no limit to the number of Linux agents that can connect.

A very large portion of time in this project was allocated to getting Xgrid to run on

Linux, and more importantly, getting the agents on Linux to run something useful with-

out crashing. As the whole purpose of this project is to provide exposure on cross platform

computing, the implementation of this agent is absolutely critical to the project.

The first step in this roller coaster ride, was to choose a Linux distribution that would

match both the project’s goals, while maximizing performance and speed. After doing

some research the Linux distributions I selected were Ubuntu which is a Debian based

distribution, and Fedora Core 3 which is Redhats’ well known community project. Both of

these distributions ran into problems meeting requirements for the installation of Xgrid,

and as such a utility known as APT4 had to be used to retrieve the packages necessary in

order to build the list of dependencies that Xgrid requires. For further details including

the installation of these distributions, see Appendix 4.

Prior to this project I was very used to installing applications on Linux using either an

rpm or a deb package, but did not have much experience compiling things manually us-

ing tarballs or gzips. Since the Xgrid agent largely required compiling packages by hand,

this was a very interesting learning experience. Essentially there are three steps in install-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 49

4 See Glossary [4]

ing any .tar or .tar.gz under Linux. The first step is to configure the build which is done

through issuing the ./configure command. This will go through a script and determine

whether or not you have all the necessary libraries and dependencies5 in order to build

the application, and finally it will create a makefile. The next stage of the installation re-

quires typing the make command, which executes the makefile, which actually compiles

the source code into binary. Lastly, by typing the make install command the installation

script will install the applications files to the system or to any directory you specify using

the --PREFIX=/install/dir during the configuration phase. These steps needed to be

completed on 3 essential packages. The first of these is the LibXML package which pro-

vides support for the XML language under Linux, the second was glib which provides

necessary libraries for GCC compiling, and the third was RoadRunner which provides the

communication framework for the linux Xgrid agent. Around 30 - 40 hours of the time

working on the project was spent determining dependency requirements, rewriting con-

figuration scripts, and building automated installation scripts. For a complete overview of

the steps required in compiling the Linux Xgrid agent please see Appendix 5.

I managed to find instructions on how to setup the Xgrid Linux agent at Daniel Cote’s

website [22] and managed to get to the point where Xgrid would run, but the second that

Xgrid would connect to the grid the agent would segfault and halt. I tried recompiling the

libraries in a number of different ways, but every time I would presented with the same

problem where it would segfault and halt. At this point I was completely stumped and the

possibility of running Xgrid in a cross platform manner seemed fairly slim. I posted the

segfault problems to the Xgrid user list, and was lucky enough to have Daniel Cote re-

spond with some simple steps I could take to debug the application. After running

through the output generated from a debug, I could not narrow the issue down further

than finding that the agent seemed to keep crashing with a call to the XMLStrnCat func-

tion in the xgridagent.c file. Not having much experience in C, I posted a series of ques-

tions to the Xgrid user list, and with a few hints I was able to narrow the search down to

one specific area in the code, which needed to be removed in order for the application to

run properly. For more details on the specific steps taken in debugging the output, and the

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 50

5 See Glossary [5]

lines that needed removing from the xgridagent.c file see Appendix 6. Once this was done

I created my own version of the Xgrid Linux agent that contained this patched file so that

I would not have to manually apply the fix to each Linux system prior to running it.

Due to the fact that I wished to install the Linux agent on as many as 5 PC’s I needed to

come up with a way to install the agent quickly and efficiently without having the hassle

of having to manually type every aspect of the installation process. I had begun to play

around quite a bit with bash scripting at this point, and the power of this technology

really began to become apparent as I thought about how I could write a script that would

completely automate the task of installing the Xgrid Linux agent. Throughout the course

of installing the agent on both Fedora and Ubuntu (Appendix 2) systems I had carefully

documented the dependencies that were needed, and recorded all the steps required in

setting the system up properly. This was then tied in with the installation of DarwinPorts

and Pov-Ray (Appendix 1) to create a completely automated installation of every aspect

of my project. To see the complete script see Appendix 8.

At this point the single Linux agent was tested to make sure it could in fact render Pov-

Ray files, and a sample render of a simple Pov-Ray library scene was conducted by run-

ning:

povray -benchmark

Once I had the automated installation script fully functional on one computer, it was time

to get the script tested on as many PC’s as I could muster. A large amount of hardware

was acquired for the purposes of this project, and the setup of this hardware is detailed in

the next section.

Hardware Setup
Although the resources listed in the hardware resources section of the project justification

section had all been acquired, much of the hardware had yet to be assembled and made

functional. The following details the steps taken in assembling the systems for the grid:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 51

‣ The 1.8 Ghz system had to be built from scratch. This involved installing the

motherboard, processor, RAM, hard drive, CDROM, heatsink, and cabling. Fe-

dora Core 3 was then installed on this system [See Appendix 4 for more details).

‣ The 200 Mhz system required a bit of a RAM upgrade as it only had 32Mb of

EDO RAM at the start of the project, this was boosted to 96Mb to bring it up

to a somewhat functional state. A customized Ubuntu installation was necessary

on this system. This involved a minimal installation with no XWindows, and

then only including the bare minimum set of packages that the agent would re-

quire in order to run. This machine during the course of this project was en-

tirely utilized via the command line.

‣ The 2Ghz system did not need any additional hardware configuration. A few

settings in the BIOS were tweaked to enhance the performance of the processor,

but no notable additions were made. Ubuntu was installed on this system as

well.

‣ The 400 Mhz system required a new hard-drive to be installed as the one that

came with it failed mid-way into the project. Ubuntu was installed to this system.

‣ The 1.2Ghz iBook system required the addition of an extra 256Mb of RAM

and the manual installation of OS X and was tailored to include DarwinPorts

and Xgrid. (See Appendix 1 for more details)

‣ The 2Ghz PowerBook system was the main workhorse for the entire project,

and was purchased 3 months before the project began. This system did not re-

quire any additional hardware, however the configuration of the system to ob-

tain a static IP was necessary. The router leases this static IP to this system based

on its MAC address. The airport (Apple’s Wireless Card) was also required to

obtain a static IP from the router through the same manner. This was done on

both interfaces because this system was intended to be the primary controller. I

did not want the controller changing its IP address mid-job, and after taking a

look at the /var/log I noticed that the airport interface in particular goes up and

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 52

down quite a bit, and as such I wanted to ensure that it would always grab the

same IP address.

‣ A 12 port 3Com SuperStack II switch was purchased from Ebay and arrived in

early January. This switch has ten 10 base T ports, and two 10/100 ports. I had

initially wished to get a 12 port switch with gigabit ethernet support but this was

quite cost prohibitive. On arrival the switch was ripped apart and the two fans

inside it were taken out as they produced around 50 decibels of noise which was

far too loud for my environment. The switch was connected to the 5 Port DLink

router through 20 feet of CAT5E network cable and was tested to make sure the

ports were functional.

‣ 100 feet of Cat5E cable was purchased, along with 25 RJ45 jacks. From this I

hand-made two 20 foot lengths of cross-over cable, and two 5 foot lengths of

straight-through cable. The network structure is detailed below: [Fig. 17]

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 53

Fig. 17 - The network structure

SSH and Remote Installation
The most time consuming process in setting up a grid was the installation of the software

on all the machines connected. In my project I quickly realized that a large amount of

time was being wasted trying to use 6 different keyboards, and 6 different mice to install

software on each of the computers connected. When errors occurred it was necessary for

me to move from computer to computer to look at the issues. This was both time ineffi-

cient, and often confusing as keyboards got confused, and commands were frequently

typed into the wrong terminals. The solution for all these issues was the installation of

SSH which permits remote secure shell access to any computer running the SSH dae-

mon.

The SSH daemon is installed and enabled by default on any Fedora Core 3 machine.

This is a bit of a security risk particularly if you don’t have very strong passwords, but it

does have the advantage of requiring no setup. On Ubuntu the SSH daemon is not in-

stalled by default and as such it must be downloaded using APT6 . This can be done by

typing:

sudo apt-get install openssh-server

Once APT has retrieved and installed the package, the daemon is auto-started and the computer

can now be accessed via SSH. In my case I used the PowerBook to completely control the rest of

the network remotely. This was done by opening up several terminal windows, and then typing

“ssh” followed by the IP address of the computer I wished to control like so:

ssh 192.168.0.101

After a username and password have been entered, terminal access was granted and I be-

gan my script-automated installation of Xgrid, DarwinPorts, and Pov-Ray. See Appendix

8 for further details.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 54

6 See Glossary [4]

Once this was completed I also needed to update the Pov-Ray libraries which needed to

contain a custom library set that is not installed with the Pov-Ray default libraries. These

custom libraries contain very particular information required in the rendering of my Pov-

Ray scenes. The retrieval and installation of these libraries was done through another

automated installation script. See Appendix 9 for further details on how this was done.

Cross Platform Problems and Solutions
From the very start of my experience with the Xgrid Linux agent I have been presented

with problems. The first issue that has already been discussed was the challenge of actu-

ally getting the agent to run without segfaulting, but the second challenge proved to be an

ever larger one. After submitting my first Pov-Ray job to Xgrid I found out that the con-

troller would crash if anything more than 15k was uploaded from the agent after the job

completed. After doing some research, I found that Mr. Cote had documented this issue

on his website:

“3. Very important bug: if the message sent by the agent is larger than 15k, it will hang.

This is a problem due to my poor understanding of BEEP. See code xgridagent-profile.c

for problem description in the function xgridagent_SengMSG(). This means that with the

Custom plugin, if you generate data in the working directory and it is larger than 15k

(tarred and zipped), the agent will hang. Most useful cases fall in that category. Fix the

code if you know how, because I don't.”

 - Daniel Cote

This proved to be a massive obstacle because the text files that were being returned to the

controller were often over 15k, and the output of the Pov-Ray renders always totaled

more than a megabyte per job. I took a look at the xgridagent-profile.c file, but the level of

complexity which is involved in the programming behind the agent would have taken far

more time to correct than the scope of this project could allow. At this point I almost gave

up hope, and began to research implementing a Condor grid and scrap the whole con-

cept of Xgrid being able to work in a cross-platform manner. As I began researching

Condor, I still kept persisting with questions on Xgrid as I was sure there was something I

was missing, and it was during this period of questioning that I stumbled into finding a

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 55

solution. This solution not only makes it possible to run Xgrid in a Cross-Platform man-

ner, but it works very well.

During the documentation of how Xgrid handles job submission, I discovered that jobs

are run as the user “nobody” which in the Linux world is given read and write permis-

sions to the /tmp directory, and can read anywhere that the world user is given access.

The problem with my original method of job submission was that I was passing the con-

troller a file list which it took, and then dolled out one file per agent, and passed the pov-

ray execution parameters. The screenshot below [Fig. 18] details how this was done:

The problem with this is that the agent takes the entire list of files, and tars them along

with the contents of the working directory. This creates a tarball that can be upwards of a

few hundred kilobytes in size. The agent then receives this tarball and extracts it to its

own folder within /tmp. Once everything is finished rendering the final render, and the

contents of the working directory in /tmp/123df on the agent are uploaded back to the

controller. In the case of the Linux agent this will crash the controller every single time

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 56

Fig. 18 - The submission of a Pov-Ray job taking a file list as an argument

the agent uploads the tarball back to the server. This method of submitting pov-ray jobs

will however work on all the OS X platforms on the grid.

The solution I came up with to solve the 15k issue was to have the agents download a

script from the controller that will force the agent to use a web-server for uploading and

downloading, rather than the controller. The script will inform the agents to change its

working directory, download everything it needs from my own customized Apache 2.0

web-server, and upload all the results back to my own PFTP server. Originally I had

planned on including the Pov-Ray output in the STDOUT but the output for large scenes

is often well over 15k so I piped the output to a different text file instead and had the

script upload this to the FTP server as well. For more information on the script that was

created see Appendix 10.

This solution solves the 15k problem because it forces the agent to work outside of its de-

fault working directory. Work is done within the /tmp/pov-script folder instead of the

/tmp/123df folder which means that when the /tmp/123df folder is tarred and returned

to the controller, the contents of this directory will not include anything. The only thing

that is returned to the controller will be the results from the STDOUT which in my script

will only be a small handful of echo and pwd commands. The resulting rendered graph-

ics, and their output files are uploaded to my ftp server, which completely avoids utilizing

the controller whatsoever so the end result is that nothing over 15k is ever returned to the

controller.

Without in-depth knowledge of what exactly is going on behind the scenes in Xgrid this

discovery would never have been possible, Through this discovery it is very probable that

I am currently the only person in the entire world that is successfully using a number of

Xgrid Linux agents as fully functional members of my grid.

Apache 2.0 and PFTP
During the time I spent trying to resolve the 15k upload issue I came upon some work

that James Reynolds had done at the University of Utah involving using a web-server, and

a series of CGI scripts to handle distribution of jobs amongst the grid. Although Rey-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 57

nolds’ scripts will only work in an OS X environment, it provided me with the insight of

using a web-server in conjunction with an FTP server to avoid utilizing the controller for

transferring files.

Initially I had utilized my own online-web-space (www.obelix.ca) which runs on a high

end server down in the states, but once I began rendering complex Pov-Ray Scenes I real-

ized quickly that using my slow ADSL connection to download and upload files to the

server took far too much time away from processing as my ADSL connection only

uploads at 60kb/sec, and downloads at 160kb/sec. My final Pov-Ray scenes totaled over

100Mb to download, and the resulting renders were around 250kb each. As a result run-

ning a web-server and a FTP server on the local area network seemed to be a much better

solution as it would be far less bandwidth intensive and would allow each computer to

fetch the next job faster.

Apache 2.0 was downloaded as part of an OpenWeb (http://openosx.com/openweb)

package available to Mac OS X which included some great OpenSource utilities such as

WebMin. The default installation of Apache was not sufficient for my needs, and I de-

cided to re-write the HTTPD.conf file specifically for the use of this project (See Appen-

dix 11 for Details). This was done largely for security reasons as the default setup of

Apache is far to relaxed for my liking and I wanted to tailor the security settings specifi-

cally for local area network use.

A program called PFTP which is an FTP program for OS X was utilized in creating an

FTP server which the Linux platforms could communicate properly with. Originally I

had been using the default FTP server included in OS X but for some odd reason the Fe-

dora Core 3 machine on the grid could not connect to the server. After some diagnosis it

appeared that the Fedora Core 3 machine was running into authentication issues with

some of the protocols being used on the FTP server. Below is the output of this problem

to prove its existence:

220 localhost FTP server (tnftpd 20040810) ready.

502 RFC 2228 authentication not implemented.

502 RFC 2228 authentication not implemented.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 58

KERBEROS_V4 rejected as an authentication type

Connected to 192.168.0.110.

At this point I tried diagnosing the problem but many fruitless searches revealed little

about the nature of the issue. At this point I switched to PFTP and after configuring the

allowed users and user directories, the Fedora Core 3 machine was able to upload to the

server via the command line. A FTP upload script was created to handle this functionality

(See Appendix 10 for more details).

BENCHMARKING AND TESTING

Pov-Ray
Once the grid was proven to be fully operational, the task of developing a complex Pov-

Ray scene capable of demonstrating the power of grid computing became a central focus

of the project. As stated in the project justification section of this paper, Pov-Ray is a

high-quality, freely available ray-tracing software package that is available for PC, Macin-

tosh and UNIX platforms. Pov-Ray allows a programmer to create complex graphics

through the use of its own custom language. It employs a concept known as ray-tracing to

do this which allows a programmer to create light rays. These rays custom programmed

into specific scenes and can be refracted by mirrors, glass, or undergo various other con-

tortions, all of which result in a single pixel of the final image. The reason that Pov-Ray

has been chosen as the primary benchmark for the grid is because the speed at which Pov-

Ray scenes render is almost exclusively tied to the processing power of the computer. Fac-

tors like RAM and GPU (Graphics Processor) speed play a very minimal role in the crea-

tion of Pov-Ray scenes. It is also worth while to note that learning Pov-Ray proved to be

an infinitely more complex task that I had ever imagined. Documentation on the lan-

guage is lacking in good examples, and the quality of the documentation when compared

to other languages I am familiar with such as PHP or JAVA is certainly very poor. As a

result countless hours were spent working on very simple scenes which I quickly realized

did not provide nearly the level of complexity I needed. For example, my first scene I cre-

ated was rendered in 1 second. Below is the code:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 59

#include "colors.inc"
camera {location <0,2,-3>look_at <0,1,0>}
light_source {<6,6,-2> color White}
plane {<0,1,0>0pigment {color Yellow}}
sphere {<0,1,0>1pigment {color Red}finish {phong 1}}

I won’t go into great detail here, but I will run through what each aspect of the code does. The

first line includes the color.inc file which contains a list of predefined colors that can be applied

to any surface using the color keyword. The second specifies the camera which is a point in space

that determines what part of any object you are looking at. The location is specified in x,y,z coor-

dinates. The light source is specified in the same way, and is used to define where the light is, so

that Pov-Ray will know how to shadow the image. The last two lines define a horizontal plane with

a yellow colour, and a red sphere centering on the origin. Also in the sphere line the finish key-

word is used to identify the level of reflectivity that the object will have. As this paper’s focus is on

grid computing, more information of Pov-Ray will not be provided however more information

can be found at Pov-Ray’s website www.povray.org .

Several other scenes were created, but all required less than a minute to render. At this point I

decided I needed to look at other options, and had seen Virtual Lego being used in combination

with Pov-Ray to produce what seemed to be much more complex scenes. James Reynolds at the

University of Utah uses his Xgrid precisely for this purpose. I spent a good week or two experi-

menting with Virtual Lego in a book I purchased which details how to use it with Pov-Ray, but

ultimately I decided I wanted to incorporate something that had more real world value. The real

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 60

Fig. 19 - The first Pov-Ray rendered scene

world value I had been seeking came in the form of an architectural CAD program called

Sketchup.

Sketchup
I chanced upon Sketchup whilst meeting with a friend who is an architect, and as he explained

the tedious chore of waiting for renders to finish using Vue D’ Esprit (A 3D rendering program),

I had an idea. Would it be possible to use Sketchup to design a complex scene, and then export

that scene to Pov-Ray? This was something he was unfamiliar with, but I was sure that it must be

possible, so I went to the Sketchup forums and began to research if this could be done. Plug-ins

can be developed for Sketchup using the Ruby programming language, and it was in the Ruby

forums that I found a utility called SU2Pov made by Didier Bur that converts Sketchup drawings

to Pov-Ray scenes. I then began working steadily on Sketchup whilst experimenting with Pov-

Ray plug-in. As I had never used any CAD software of any kind the learning curve was fairly

steep, but Sketchup is very well designed, and once I had figured out a few key concepts and

worked through the tutorials I began to get the hang of things really quickly. My first simple

drawing [Fig. 20] was little more than a box which contained a few pieces of furniture, and some

indoor lighting components. These lighting components export the light source into Pov-Ray,

and without them the scene would come out completely black (As can be seen in one of the

windows in the above screenshot). Once the model is exported, it can then be rendered in

Pov-Ray either through the Mac OS X GUI client, or through the command line using:

/opt/local/share/povray-3.6/povray room.pov +W1024 +H768

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 61

In this command the scene “room.pov” is ren-

dered at 1024 x 768. The initial test was very

spectacular considering the time it would have

taken to develop the scene using Pov-Ray

alone. To the left is the resulting scene [Fig.

21]. (Note that the lamp was removed and a

plant added instead)

 In terms of learning time I be willing to place

at least 100 hours on the learning of Sketchup

and the SU2PoV alone. Sketchup is an im-

mensely powerful program, and documenting what I did within it is far outside the scope

of this project. I found the challenge of creating a scene that would take a computer sev-

eral hours to render to be immensely challenging, and in the latter portions of the project

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 62

Fig. 20 - The first 3D architectural drawing created using Sketchup for OS X

Fig. 21 - The room.pov render

the scene I developed became so huge that in order to work on it I had to take a trip to

Victoria to utilize a friend’s Dual 1.2 GHz PowerMac in order to complete the drawing.

Below is a photograph [Fig. 22] of the development environment for my final Sketchup

scene:

Developing the final scene took almost 2 days of sold work, but the result was astounding.

On the following page is a wire-frame view of the model [Fig. 23] in Sketchup that was

created for the benchmarking of the grid. This model incorporated many aspects of

Sketchup and demonstrates a large number of its components and capabilities.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 63

Fig. 22 - The author hard at work on a 3D architectural drawing, in the background is a Dual

Processor PowerMac which was used in exploding the final drawings.

At 1024 x 768 it took my PowerBook 3 hours and 14 minutes to render the scene. The

reason the model took so long to render is due to a number of factors.

• The level of reflectivity I demanded required a mirror-like polish on every scene

• Radiosity-Final was used which increases particle effects and soft shadowing

• Realistic water and sky effects were employed. This was done manually at first,

but in a later revision of SU2Pov this became integrated with the plug-in. Some

of my own custom programming was still left in

• Pov-Ray surfaces were used. Some of these are visible in the final render in the

form of metallic finishes, windows, rock finishes, and spiraling.

The design of the final scene was based around the need for a very random drawing that

employed the use of curved surfaces and complex shadowing. Other scenes were devel-

oped with more of an architectural look and feel, but this scene proved to be the ultimate

benchmark. One of the actual scenes is depicted on the following page.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 64

Fig. 23 - A wireframe outline of the final 3D architectural drawing.

After the final of this scene I was now ready to fully test the grid and see what could be

accomplished.

Results
Now that a sizable Pov-Ray scene had been produced, the hardware has been setup, and

the Linux agents are capable of running on the grid without crashing, it is time to

benchmark the grid. As written in the project proposal the purpose of this project is to

prove that employing a grid to distribute renders in a cross platform manner is not only

feasible, but it is also much faster than stand-alone rendering. To make the interpretation

of these results easier, names will be assigned to each of the computers connected to the

network. These names of each of these machines are listed below:

• Centurion (2.5GHz AMD Barton - Ubuntu)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 65

Fig. 24 - One of the many final Pov-Ray renders from the architectural drawing.

• Legionaire (1.8GHz AMD Athlon -Fedora Core 3)

• Praetorian (1.5GHz PowerPC - OS X)

• Minimus (1.2 GHz PowerPC - OS X)

• Protus (400 MHz Pentium II - Ubuntu)

• Percival (2oo MHz Pentium I - Ubuntu)

The first benchmark which was conducted required rendering 10 identical Pov-Ray

scenes at 640x480 with anti-aliasing, on a single 1.5Ghz PowerBook G4 machine. This

scene was not very intensive, and only took a short time to complete. The results of these

renders are depicted in the graph [Fig. 25] below:

The average time it took the computer to render these scenes was 36.7 seconds. The total

time required in rendering the scenes was 367 seconds or 6.12 minutes. The rendered

scene [Fig. 26] is depicted on the following page.

0 sec.

10 sec.

20 sec.

30 sec.

40 sec.

Job Number

1 2 3 4 5 6 7 8 9 10

36 sec.37 sec.37 sec.
39 sec.

36 sec.35 sec.
38 sec.37 sec.

35 sec.
37 sec.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 66

Fig. 25 - The time to render 10 identical scenes on a single 1.5GHz machine

The second benchmark also rendered the same 10 identical Pov-Ray scenes at 640x480

with antialiasing, but this time the grid was employed in distributing the renders. The re-

sults of this benchmark are depicted below [Fig. 27]:

0 sec.

87.5 sec.

175.0 sec.

262.5 sec.

350.0 sec.

Job Number

1 (C
emturio

n)

2 (L
egionaire

)

3 (P
raetoria

n)

4 (M
inim

us)

5 (P
erciva

l)

6 (P
rotus)

7 (C
enturio

n)

8 (L
egionaire

)

9 (P
raetoria

n)

10
 (L

egionaire
)

19 sec.
39 sec.

19 sec.21 sec.

205 sec.

310 sec.

78 sec.

39 sec.
19 sec.17 sec.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 67

Fig. 26 - The scene used for the 10 identical renders

Fig. 27 - Time taken to render 10

identical scenes using 6 computers

These results are difficult to interpret because if we take the total time value we would

find that it took the grid 766 seconds to complete the task. This is incorrect however be-

cause some of these jobs were run concurrently. In the case of Centurion, Legionaire,

and Praetorian, each computer finished its first job, and grabbed the next. In Legion-

aire’s case it grabbed 3 jobs because it finished its second job slightly before Centurion

finished. Factors such as network latency and delay also come into play here as I had ex-

pected Centurion to grab 3 jobs. In the case of this graph however, the total time for the

entire task to complete was 310 seconds (5.17 minutes) which was the time it took Percival

to complete rendering. Percival was rendering for 105 seconds past the next slowest sys-

tem (Protus) and completed well after the rest of the computers were long done rendering.

At this point I realized that having the slow systems as functional members of my grid did

more damage than it did use. Even on small jobs such as these they completely bogged

down grid performance. That being said the grid still completed the task 57 seconds faster

than it took the 1.5Ghz Praetorian to complete on its own.

At this point I was interested to see what would happen if I took the slowest computers

out of the Grid and allow only Centurion, Legionaire, and Praetorian to participate. The

results [Fig. 28] on the following page detail this discovery.

0 sec.

11.25 sec.

22.50 sec.

33.75 sec.

45.00 sec.

Job Number

1 (C
emturio

n)

2 (L
egionaire

)

3 (P
raetoria

n)

4 (C
enturio

n)

5 (L
egionaire

)

6 (C
enturio

n)

7 (L
egionaire

)

8 (P
raetoria

n)

9 (C
enturio

n)

10
 (L

egionaire
)

19 sec.
15 sec.

42 sec.

20 sec.
15 sec.

19 sec.19 sec.

45 sec.

19 sec.
15 sec.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 68

Fig. 28 - Time taken to render 10 iden-

tical scenes using 3 fast computers

These numbers are quite promising as we have cut down massively on the time to com-

plete the job. The task was started at 11:29:20 by Centurion, and finished at 11:30:40

with Praetorian. Below is a screenshot [Fig. 29] of Praetorian finishing the task. The total

time to finish the job was 80 seconds (1.33 minutes) which is nearly 5 times faster than the

initial benchmark. This proves that slower machines on a HPC network are more of a

hinderance than a use in most cases.

The chart on the following page depicts the final results for the low quality rendering

times. [Fig. 30]

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 69

Fig. 29 - A screenshot of the 1.5GHz machine finishing the last task in the Pov-Ray render

The first major test of the benchmark was using our final Pov-Ray scene on Praetorian

alone. 7 scenes from different perspectives of my model were used to obtain this bench-

mark. These scenes are depicted below:

Render 10 Tasks

Top 3 Fastest Systems

All Systems

Praetorian Alone

0 m
in.

1.6
25 m

in.

3.250 m
in.

4.875 m
in.

6.500 m
in.

6.12 min.

5.17 min.

1.33 min.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 70

Fig. 30 - The final result depicting the times taken to render 10 identical scenes

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 71

Fig. 31- The time taken to render 7 scenes on a 1.5GHz machine

The total time required to process all the scenes in our benchmark series took 57573 sec-

onds or 959.55 minutes or 15.99 hours on our single PowerBook G4 [Fig. 31]. However,

under our grid performance greatly increased [Fig. 32].

0

3,750

7,500

11,250

15,000

Time (seconds)

Right-Side Docks Tower Left-Side Rocket Bridge People

0

7,500

15,000

22,500

30,000

Tim
e (s

econds)
Right-S

ide (C
enturio

n)

Docks (
Legionaire

)

Tower (P
raetoria

n)

Left-
Side (M

inim
us)

Rocket (C
enturio

n)

Brid
ge (C

enturio
n)

People (L
egionaire

)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 72

Fig. 32- The time taken to render 7 scenes on 4 computers

Xgrid definitely appears to deal excellently with job scheduling, and as we can see here

Centurion takes 3 jobs since it completed the rocket scene in a very short period of time.

Praetorian never got a chance at a second job since Legionaire took the remaining job

because it finished first. The time to complete the job was the time for Minimus to com-

plete the Left-Side render, as all the other machines were finished well before Minimus

completed. which in this case was 7.20 hours (25929 seconds total). So as we can see here

already we have witnessed more than a 50% reduction in the time taken to complete ren-

ders. This result is very impressive and I felt that this accurately demonstrated the power

of using a cross-platform Xgrid. Below is a final comparison of the results of this discov-

ery.

CGI, Blosxom, and RSS for Displaying Xgrid Output
In order to better display the output of my Pov-Ray renders I utilized open-source blog-

ging software called Blosxom to take the results of my pov-ray text output, and display it

Render 7 Scenes

Top 4 Fastest Systems

Praetorian Alone

0 hours

5 hours

10
 hours

15 hours

20 hours

15.99 hours

7.20 hours

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 73

Fig. 33- A comparison of standalone vs. Xgrid benchmark times on a set of 7 scenes.

on a website. Blosxom runs using a combination of HTML, RSS and CGI, and was the

primary reason behind creating a CGI-Bin on the Apache web-server. The main goal

behind this concept is that it permits an administrator to view the entire output of a sub-

mitted job without having to be anywhere near the grid. With this kind of technology, a

grid administrator can leave the grid running at work, and when he returns home he can

monitor the output of the grid very easily via a browser, or through an RSS reader.

In the submit script I created (See Appendix 10) text files are uploaded to a directory

within my Apache web server which Blosxom then time-stamps and posts to my blog.

Further details are not provided as this is an additional feature outside the scope of this

report. Setting up Blosxom and creating the website it ran on took approximately 5 hours.

Below is a screenshot of the site:

Fig. 34 - The blog used in displaying the Pov-Ray output files

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 74

CONCLUSIONS

The Future of Xgrid
Xgrid Preview certainly appears to be a step in the right direction, and for the purposes of

this project, has certainly proved its worth. With the upcoming release of OS X Tiger,

Xgrid will reach a 1.0 release, and is expected to contain many fixes and new features.

Some of these features are listed below:

• Supports up to 10,000 queued jobs, 10,000 tasks per job, and 2GB of data sub-

mitted per job, 1GB of data per task, and over 10 GB of total returned results.

• The agent will be included as bundled software on both desktops and servers

• In addition to the command - line client, there will be a new Cocoa API for

monitoring nodes and submitting Xgrid jobs.

• The controller will be integrated directly into the OS X 10.4 Server Admin

Panel via a new Xgrid Admin panel. Also a lightweight controller will be intro-

duced for desktop versions.

• Mutual authentication for both the client to controller, and client to agent.

• Email notification of tasks completed

• Single sign-on using Kerberos and Open Directory Services.

• A new software developer’s kit to allow individuals or organization to create

their own applications and custom plug-ins for Xgrid.

The primary goal of Xgrid 1.0 is to provide scientists and researchers with all the tools

they need to easily build a super-powered computational cluster, but the uses for this

technology are boundless.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 75

One of the most interesting projects relating to Xgrid that is being developed is some

web-based software called Gri-

dObjects. GridObjects is an ap-

plication in the works by Fabio

Invernizzi. This software has

not been released yet, but sev-

eral screenshots have been pro-

vided and it looks as though it is

a complete web based admini-

stration utility for the remote

administration, monitoring, and

submission of Xgrid jobs. More

screenshots of this software can be viewed at:

http://www.stalefish.it/GridObjects/GridObjects.html

Xgrid certainly appears as though it has a promising future, and the fact that people are

already developing software for it in anticipation of its 1.0 release is only fuel to the fire

that it is likely to be quite successful.

Recommendations
Considering that the UCFV CIS department has 3 laboratories each with an estimated

25 computers in each lab, and each with a 2GHz processor, the total power available to

the CIS department alone exceeds 150GHz. This grid could be found especially useful for

students or professors in the chemistry, physics, engineering or mathematics faculties who

wish to experiment with compute-intensive theories, protein modeling, genome research,

or architectural rendering. but this is not the only use which the grid could be used for.

UCFV could lead British Columbia in offering the first ever grid computing course where

students would learn about grid technology in both theory and application. The labs

could be used as a permanent training ground for students who wish to experiment in a

technology which is destined to be one of the most hottest sectors in the technology in-

dustry. UCFV could also provide services such as an “open-grid” concept whereby staff

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 76

Fig. 35 - GridObjects is a web-based Xgrid management

system.

from other Universities could be invited to UCFV to run their simulations or calculations.

This could not only increase UCFV’s prestige in the academic community, but it could

also increase the research output of countless projects, and could potentially provide

UCFV with further funding from the government or corporations who are willing to in-

vest in the technology.

The power and ease of use that Xgrid brings to the grid computing scene is certainly

miles ahead of the competition, and with the expected release of Xgrid 1.0 in Tiger,

things will only get better. One of the biggest selling features of Xgrid in my opinion is

the ease of the setup and submission of jobs to the grid. This is particularly important to

science students or professors who may not have experience in computing but want to dis-

tribute their work. These individuals will find this far easier to do on an Xgrid than any

other grid technology available on the market today.

For UCFV to implement an Xgrid, a few Apple systems would of course need to be pur-

chased for the controller to reside on. I would recommend a series of PowerMac G5’s for

this task (The same systems that ran on Virginia Tech’s Super Computer), as their dual

CPU architecture is perfect for handling large volumes of compute intensive related work.

PowerMac’s are very reasonably priced at $1899 but with UCFV’s educational discount

(All canadian universities are eligible) the starting price of these systems begins at $1699

per system. A number of these systems could be purchased depending on the manner in

which UCFV would like to distribute the grid controllers. If funding is not available for

systems of this calibre, Apple has also recently introduced a product called the Mac Mini

which is priced at $599 with the educational discount. The Mac Mini is a tiny machine

with only a 1.4 GHz G4 processor, however for the purposes of being a controller it

would be adequate. If UCFV were to order these systems in May, OS X Tiger will be in-

cluded in the package. Although OS X Tiger will have a lightweight controller on non-

server versions of the OS it is recommended that UCFV purchase OS X Tiger Server as

further Xgrid functionality will be available on the server version only. OS X Tiger Server

is priced at $599 Canadian with the educational discount.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 77

The main bulk of the grid’s computing power would be provided by the systems already

existing in our labs. Using my automated installation scripts, setting up Xgrid on either

Fedora or Ubuntu is a breeze, and within a day or two, UCFV’s computers could be con-

nected to the grid. There are still a fair number of flaws in the Linux agent, but we have a

number of very talented programmers on staff who could work on increasing the stability

of the Linux agent. In this quest I am sure both Apple and the aforementioned Daniel

Cote would be very willing to provide assistance or answer technical questions if serious

development effort was put into the software. This could put UCFV on the roadmap of a

very cutting - edge field, and if UCFV were to produce a fully functional Linux agent,

there would be a large number of academic institutions across the globe would be very

interested in it.

If UCFV decides that it does not want to look at implementing Xgrid and is disinterested

in Apple technology, another option is Condor. Condor has the advantage of being truly

cross platform since it can run on OS X, Linux, and Windows, but it is not easy to setup,

nor is it easy to submit tasks to. A large amount of research was done on Condor during

the time this report was produced but it has not been included in this report due to time

constraints. UCFV could definitely implement a Condor grid without having to purchase

any further hardware, but the time and money required in setup, trouble shooting, and

research may be worth far more than it would cost to purchase Apple hardware.

The future is now, and the time to capitalize on grid computing has come. UCFV cannot

afford to sit and wait as this technology provides an opportunity to establish ourselves as a

research institution. Virginia Tech has done it, SFU is doing it, and UCFV can do it too.

Grid computing is a field which is rapidly expanding and experience in this field would

certainly be an asset to any individual graduating from our CIS program, or any of the

science programs in general.

Final Conclusion
This paper has taken a in-depth look at the field of grid computing, some of its history, its

terminology, and its practical application. Details have been provided as to the current

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 78

state of grid computing and the paper has outlined information on future products ex-

pected to be introduced to the field by companies such as Sun Microsystems, IBM, Mi-

crosoft, Globus, and Apple.

In order to demonstrate how grid computing can be used in everyday activities on a vari-

ety of operating systems, this paper has examined how such technology can be used to

benefit modern architects. A combination of Apple’s Xgrid technology, Pov-Ray, and

Sketchup was used to accomplish this. Sketchup, a popular 3d CAD program, was used in

conjunction with light ray rendering software called Pov-Ray to produce a series of envi-

ronments which the grid (Xgrid) computed. Each of these environments was intensive

enough for the grid to spend considerable time processing the scenes. During the low

quality benchmarks, it was observed that adding slower machines to the grid only mar-

ginally increased performance by 18% but by removing these systems from the grid an

only using systems of similar speed it was found that the grid could increase performance

by as much as 460%. The high quality benchmarks that were used, found that grid-

computing can enhance computational performance by more than 50% on the graphical

scenes, taking 7.20 hours to render 7 scenes that took a single computer 15.99 hours to

render. These scenes were rendered over a cross-platform Xgrid running on a mixture of

Fedora Core 3, Ubuntu, and Apple OS X operating systems. Through these results it is

possible to see the application of this technology for both home users and research uni-

versities.

The road to creating a cross-platform Xgrid has not been easy, and has witnessed many

bumps along the way. The scripts and products which are detailed in this paper’s research

will make future installations and uses of this technology infinitely easier. The automated

setup script for Linux in particular allows for any administrator to quickly and easily dis-

tribute the Xgrid linux agent among many computers, and is one of the primary products

of this paper.

The purpose behind this research paper was to provide a detailed overview of grid com-

puting, its benefits, and how it is being used today and has shown how this technology can

be used in real life cross platform situations. Through this research it is easy to see how

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 79

this technology could be utilized in a university setting. Since any shell task or command

line parameter can be executed as a job over the network, the possibilities of this technol-

ogy are almost limitless in their application. Researchers at universities can use technolo-

gies such as PERL or MPI in writing programs that will help automate compute intensive

tasks, and by using some of the examples provided in this paper can see how it is possible

to distribute their projects in a cross platform manner. It is hoped that through the infor-

mation and documentation provided within this project that students and staff at UCFV,

and other universities around the world will not only be able to create their own cross

platform Xgrid networks, but that they will also see the vast range of opportunities that

this technology can bring to their research.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 80

GLOSSARY
1. Floating point operations are when you take two numbers that might not be integers

(i.e. 5.4 or -1.1) and add / subtract / multiply / divide them. The reason it comes up in

assessing the performance of computing is that there are some kinds of computing prob-

lems, like doing permutations and combinations, that mostly involve integer math, and

some that involve mostly floating math (like calculating distances and angles and orienta-

tions in a 3D environment). So over time, computers came to do integer and floating

point math in separate parts. But especially for high-performance scientific computing, it

is the floating part that is the computer intensive part. So the number of floating point

operations per second (flop) became the benchmark of speed.

2. Rendezvous - Apple’s revolutionary network technology that creates instant IP based

networks with no configuration required. For more information on Rendezvous, visit Ap-

ple’s rendezvous website at: http://www.apple.com/macosx/features/rendezvous/

3. BEEP - BEEP is a framework for writing application protocols that are message-

oriented, which may, or may not, use XML. Further information on BEEP can be found

at http://www.beep.org

4. APT- An advanced packaging tool that creates a rapid, practical, and efficient way to

install packages,manage dependencies automatically, and take care of their configuration

files while upgrading. APT is built into all Debian based distributions, and can also be in-

stalled on Fedora Core 3 through http://apt.freshrpms.net/ . Below are a few of the

commands you will see in use throughout this report:

• apt-get update : This command updates the apt package repository list,

and gets the latest list of packages available from sources specified in the

/etc/apt/sources.list file.

• apt-get upgrade: Searches sources for updated versions of every single

package that is currently installed on the system. Once updates are found

they are automatically downloaded and installed, old versions are removed

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 81

and the new versions are installed in their place. This is an excellent utility

for keeping your operating system up to date.

• apt-get dist-upgrade: This method can be used to upgrade an entire

installation system at once. This will include all kernel upgrades and other

upgrades to do with the system that apt-get upgrade does not download or

install. APT will download these packages automatically and replace the old

kernel version with the new one. Kernel recompiles are a thing of the past

with this excellent utility.

5. Dependencies - During the installation of Linux applications or packages, certain

packages often “depend” on the presence of other libraries or applications. Usually if

things fail within the configure script it is because you do not have the elements necessary

to compile the application. At this point you can scroll up through the print out and de-

termine what exactly is missing from the requirements. In some cases this is much easier

said than done, and can require many hours of scouring the net to find out how to ac-

quire the necessary dependencies to solve these issues. Sometimes even after installing a

particular dependency the configure script will still fail. This can sometimes be solved by

making sure the configure script knows where to find these dependencies. This can be

done using the: --with-application_name-includedir=/path/to/dependency_location

Ex.

./configure

--with-roadrunner-includedir=$HOME/roadrunner-1.0

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 82

APPENDIXES

Appendix 1 - Darwinports and Pov-Ray
Introduction

In order to install a command line version of Pov-Ray it is necessary for us to install a

command-line utility called DarwinPorts. The DarwinPorts project goal is to provide a

method for installing open-source software products on Darwin, Mac OS X, FreeBSD, or

any Linux system. They have recently just finished successfully porting 2000 applications

into their repositories and this list grows continually. In our case we will be installing Pov-

Ray through the ports in order to obtain its command line functionality. By default the

Pov-Ray package that is built for OS X is not available via the command line and as a

result we would not be able to run the render through our grid.

After some research and many thanks to James Reynold’s from the University of Utah

which has published some great articles on using Xgrid and Pov-Ray together, I found

DarwinPorts to be the only possible solution to my problem. It is important to note here

that command line Pov-Ray is essential to our project, as when the Xgrid client issues the

command to the Xgrid controller to run an executable called Pov-Ray with a bunch of

parameters, all agents on the grid must have Pov-Ray installed in the same manner. If the

agents do not have the Pov-Ray libraries and executables available in the same directories,

the agents will fail to render anything that the controller passes to them. DarwinPorts is

the only logical solution to this issue, as it will install Pov-Ray to the same directories with

the same paths regardless of whether it is running on a Unix machine, and OS X ma-

chine, or a Linux machine.

Installing XCode Tools

Before installing DarwinPorts can be installed on OS X we need to acquire and install the

XCode tools. We need these tools because they provide the GCC compiler, autoconf,

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 83

CVS, and other tools which make this all work. XCode tools are available to download

from Apple’s developer website here:

http://developer.apple.com/tools/macosxtools.html

Once the tools are downloaded, extracting the package and opening the Developer.mpkg

will install the tools. Before installing make sure you customize the installation and ensure

that the appropriate packages we need are selected. A screenshot on the following page

will detail what packages we need to install. I checked off installing the cross-platform de-

velopment packages as I wasn’t sure what version of the GCC package DarwinPorts re-

quired and by choosing this option the 2.x version of GCC is installed. I also installed the

X11 SDK as I was pretty sure that any applications that we download in the future that

are cross platform may require some of the X11 libraries. It is also good to note that

without the Developer Tools Software we will not be able to use CVS (Concurrent Ver-

sioning System) and since DarwinPorts is only provided via CVS this makes XCode Tools

all the more necessary.

It is also worthwhile to note that installing DarwinPorts is made much easier by the pres-

ence of X112. X11 is the complete suite of the standard X11 display server software, cli-

ent libraries and developer toolkit, and is built specifically for OS X.

A screenshot of the XCode Tools installer is below.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 84

Installing DarwinPorts on OS X

In order to install DarwinPorts we must now open a terminal and login to the Darwin-

Ports CVS Server. This can be done by opening a bash shell and making sure we are in

our home directory (cd ~). Then typing the following:

bash% cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od
login

It will then prompts for a password but there isn’t one set so just hit enter and continue.

Now that we’ve logged in we can download the nightly CVS snapshot by entering the fol-

lowing command:

bash% cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od co
-P darwinports

Now it will retrieve all the necessary files from the CVS server. When it has finished it will

return us to the console and we are now ready to begin the installation. First we will enter

into the directory it downloaded to and then we will configure the installation.

bash% cd ~/darwinports/base

bash% ./configure

At this point it will run through the configure script and check to make sure we have all

the necessary libraries in order to compile the application. Pay specific attention to the

highlighted areas in the screenshot below as it will tell you whether you have all the neces-

sary requirements to install DarwinPorts (Notably CVS, GCC, and Curl)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 85

Next we need to use the make command, and the make install command to install Dar-

winPorts. You will need superuser access to do this:

bash% make

bash% sudo make install

Now in order to be able to run the port executable without being in the directory in

which it is installed we need to add the executable path to our .profile like so:

bash% vi ~/.profile

Now hit (shift-i) which will force vi to make an insertion. We will add this line to the file:

export PATH=$PATH:/opt/local/bin

Hit (:wq) to write and quit the vi text editor. If you find this all too much hassle you can

enter that command manually every time a terminal window is started for the same effect.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 86

Finally Installing Pov-Ray on OS X

Providing that everything has compiled correctly you can now install Pov-Ray for com-

mand line rendering. This is done by entering the command below:

bash% sudo port install Pov-Ray

This should install Pov-Ray to /opt/local/share/Pov-Ray-3.6 and setup the executable in

/opt/local/bin. Once Pov-Ray is installed you should be able to run Pov-Ray through the

command line by typing the following:

bash% Pov-Ray [+/-]Option1 [+/-]Option2

Installing DarwinPorts and Pov-Ray on Linux

Having installed DarwinPorts Installing Pov-Ray on Linux turned out to be a much more

complex operation than the straight forward installation on OS X, and almost immedi-

ately I ran into issues. Below are the initial steps I took to creating what I thought would

be a working DarwinPorts installation.

On the Linux client it will be necessary to install APT which stands for “Advanced Pack-

age Tool” and is freely available for most distributions, and pre-installed on Ubuntu. In

order to install we must run the following commands:

apt-get update

apt-get install tcl

apt-get install tcl-devel

apt-get install tcl-html

Now we can try installing darwinports:

bash% cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od
login

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 87

bash% cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od co
-P darwinports

Once it has finished downloading it should place DarwinPorts inside your home directory.

Change paths to the DarwinPorts base directory where the installation files are kept and

then run the configure script.

bash% cd ~/darwinports/base

bash% ./configure

Here we will notice something interesting happening within the content of the configure

script when it is executed. I had originally glossed over this, but as we will see, this is the

start of some problems.

checking md5.h usability... no

checking md5.h presence... yes

configure: WARNING: md5.h: present but cannot be compiled

configure: WARNING: md5.h: check for missing prerequisite head-
ers?

configure: WARNING: md5.h: proceeding with the preprocessor's re-
sult

Everything appeared as though it had configured correctly with the exception of the

above few lines so I then tried:

bash% make all

This then tries to compile the application and fails miserably. The below is the result of

the attempt:

===> making all in src/programs/mtree

make[3]: Entering directory `/home/optio/darwinports/base/src/
programs/mtree'

gcc -DHAVE_CONFIG_H -I. -I. -DNO_MD5 -DNO_RMD160 -DNO_SHA1
-DHOST=\"i686-pc-linux-gnu\" -g -O2 -c compare.c -o compare.o

In file included from compare.c:80:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 88

/usr/include/md5.h:27: error: syntax error before "UINT4"

/usr/include/md5.h:30: error: syntax error before '}' token

/usr/include/md5.h:38: error: syntax error before "PROTO_LIST"

/usr/include/md5.h:39: error: syntax error before "PROTO_LIST"

/usr/include/md5.h:41: error: syntax error before "PROTO_LIST"

/usr/include/md5.h:43: error: syntax error before "PROTO_LIST"

make[3]: *** [compare.o] Error 1

make[3]: Leaving directory `/home/optio/darwinports/base/src/
programs/mtree'

make[2]: *** [all] Error 1

make[2]: Leaving directory `/home/optio/darwinports/base/src/
programs'

make[1]: *** [all] Error 1

make[1]: Leaving directory `/home/optio/darwinports/base/src'

make: *** [all] Error 1

As this has failed there is no point in running the “make install” command and we are

back to the drawing board on how to install Pov-Ray. I then appealed to the DarwinPorts

user groups and to numerous online forums and received nothing but poor feedback

stating that DarwinPorts was intended for OS X installation only, and although

it technically states that it “can” be installed for Linux, it does not actually work.

A few days later I received an email from an individual named Dave Serpa who works for

freeshell.org, and he stated that apparently he had got DarwinPorts to work operationally

with his Fedora Core 2 Linux installation. After several emails that flew between our in-

boxes he was able to advise me on how I could correct some of the issues I was having.

After doing some playing on my own with the determination of dependencies that were

necessary to build DarwinPorts I came up with a long installation script that will auto-

mate the complete installation of DarwinPorts for me. Below is this script:

#!/bin/bash

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 89

##First get all the necessary libraries and programs we need

sudo apt-get update

sudo apt-get upgrade

sudo apt-get dist-upgrade

sudo apt-get install automake

sudo apt-get install autoconf

sudo apt-get install libtool

sudo apt-get install flex

sudo apt-get install bison

sudo apt-get install gcc

sudo apt-get install gcc-doc

sudo apt-get install g++

sudo apt-get install libgtk1.2-dev

sudo apt-get install libpng-dev

sudo apt-get install curl

sudo apt-get install libxml2

sudo apt-get install glib2

sudo apt-get install gawk

sudo apt-get install perl

sudo apt-get install indent

sudo apt-get install g77

sudo apt-get install gtk2-devel

sudo apt-get install openssl

sudo apt-get install libssl0.9.7

sudo apt-get install libssl-dev

sudo apt-get install tcl8.4-dev

sudo apt-get install tcl8.4-doc

sudo apt-get install libpgtcl-dev

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 90

sudo apt-get install libpgtcl-dev

sudo apt-get install cvs

sudo apt-get install libgrypt7

sudo apt-get install libgrypt7-dev

sudo apt-get installl libgrypt-doc

sudo apt-get install ssl-cert

##Now it is time to install darwinports and Pov-Ray

##we need to add the wheel group to the system so that we can
#install darwinports properly, only do this if you are using a
#debian based distribution

cd /usr/local

mkdir src

cd src

#Login to CVS

cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od
login

#Downloads darwinports to /opt/local/src via CVS

cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od co
-P darwinports

PREFIX="/opt/local" # default prefix

cd darwinports/base

./configure --prefix="$PREFIX" --mandir="$PREFIX/share/man" \

 CPPFLAGS=-I/usr/include/openssl

make all

sudo make install

cd ../../bin

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 91

./port install Pov-Ray

#If you run into the following:

 #/home/user/darwinports/bin # ./port install Pov-Ray

 #can't find package darwinports

while executing

#"Package require darwinports"

(file "./port" line 34)

#sudo addgroup --system wheel

At this point you should have a fully functional DarwinPorts installation, and Pov-Ray

should now be able to run simply by typing the command:

bash%: Pov-Ray

Overall the installation of DarwinPorts for Linux took the better part of 20 hours to get

working within the Linux environment, and required not only in-depth knowledge of

command-line linux, but also a knowledge of linux packages and dependencies. Further-

more being able to debug command line errors and create workarounds, and knowing

how to decipher the technical advice that could be found in newsgroups and forums was

definitely a major challenge. It is also important to note here that this is the first time

DarwinPorts has ever been installed on Ubuntu Debian based distributions, or Fedora

Core 3. The installation of DarwinPorts for Linux was critical in getting Pov-Ray to work

in a cross platform manner with Xgrid.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 92

Appendix 2 - Xgrid User Interface
Controller and Client Setup

We will begin our analysis of the Xgrid interface by taking a look at the controller and

client setup. Once Xgrid is installed, an Xgrid icon appears in the system preferences

pane of your OS X client.

Once the user has clicked on the Xgrid icon in the preferences pane, they are presented

with 4 tabs across the top depicting control options for either the agent or the controller.

The first screen that appears is the configuration for the Xgrid agent. The agent may be

started or stopped by clicking the “Start” button and then again by clicking the “Stop”

button once the agent has been started.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 93

Options for connectivity include binding to the first available service, binding to a specific

service name , and connecting to a specific host. In our case since we will only be running

one Xgrid controller, binding to the first available service is fine, although we could go

and specify the controller’s IP address and connect to it manually just as easily.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 94

The user can also specify

when the agent may accept

tasks that the controller has

available. If you choose to

only allow the agent to do

jobs when the computer is

idle, the agent will only be-

come active when the

screen-saver becomes active

(Left). Tasks can optionally

be suspended and withheld

until the computer is idle

again and ready for processing jobs.

Lastly there is an option to allow the computer to always accept tasks. This is the setting I

will be using as I want all of my systems to be available whenever I have jobs that need

completing.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 95

The security options for the

agent are very simplistic, and

provide a single option to

force the agent to check

whether or not the controller

has supplied a password. By

default Xgrid requires pass-

words to be specified.

Once the controller tab is clicked op-

tions are presented for the configura-

tion of the controller. Again we see a

very simple configuration with a

start/stop button and a field for

specifying a password for the agents

to connect to.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 96

Once the controller and The last tab

is for the controller security. An op-

tion exists to force the agent to pro-

vide a password. If the password is

not specified the agent will not be al-

lowed to join the grid.

Once the controller and agent configurations have been set, the Xgrid application can be

started up. Below is a screenshot of Xgrid in action working on a factor job.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 97

The Xgrid.app

The Xgrid application in itself is extremely modular. Below is a screenshot of what the

application looks like at startup.

As we can see here the interface is very simple. Design simplicity is something that is

heavily emphasized in Alan Cooper’s book, and is something that is very obvious in this

particular application. The beauty of this application is in its modular structure, and its

intuitive interface. The user is presented with a list of available clusters on the left, and

possible job types to perform on the right. Upon clicking on the “Rendezvous” cluster an-

other screen pops up which lists the agents connected to the grid, and their status. This

makes life very simple, as both the options are self explanatory, and more information on

an item is easily available by either double clicking on a item, or single clicking and press-

ing the “Ok” button.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 98

As we can see above, we have just double clicked on the Rendezvous cluster and we are

now viewing the systems that comprise our cluster. Currently there are 3 offline systems

and one online Linux agent. Not only are the systems presented in terms of their names

and status, but they are also represented graphically by the little computer icons on the

bottom of the pane. These icons are updated dynamically as their status changes. A

screenshot below depicts the states of these systems.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 99

This easily viewable display makes administrative tasks quite easy as a single glance at the

display will be able to tell you the status of the grid, how many systems are connected to

it, and what the status of each system is.

As jobs are finished each graphic is

updated to the “available” status,

unless they become offline or un-

available. Unavailable systems only

become unavailable when they are

no longer idle, this is a feature we

talked about earlier that can be en-

abled in the Agent tab of the Xgrid

preferences pane.

One of the coolest features of Xgrid is the tachometer. This meter measures the current

grid processing power in gigahertz as it is applied to jobs. For instance before a new job is

created, or while the network is idle the tachometer registers at 0.

As jobs are submitted the tachometer will drop or rise due to either a shortfall in process-

ing, or a sudden burst of processing by all available machines on the grid. This tool is

merely eye-candy, yet it is very useful in deciphering which computer is doing work as it is

tied directly to the effects viewed on the graphical status icons we discussed earlier.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 100

Although there is no need as far as this project is concerned in delving into all the plugins

available to XGrid we shall review two built-in job types which we will be using frequently

to submit jobs to the grid. The first is a “Shell” job which allows any standard unix com-

mand to be submitted to the grid.

Once this option has been selected hit-

ting the ok button will bring us to an-

other screen which will permit us to en-

ter shell commands. This particular

function was found to be highly useful

when needing to debug particular com-

mands being submitted to the grid, or to

perform single command line opera-

tions.

As we can see here a unix command has

been given (uname -a) and the results

from that command have been provided.

Everything has been designed simply, yet

elegantly, with maximum effort put into

not adding more buttons or menus than

are absolutely necessary.The results of

our query are even selectable so that one

can include them in reports or journals if

necessary. It is the little things in this ap-

plication that make it such a great suc-

cess.

Linux localhost.localdomain 2.6.9-1.667 #1 Tue Nov 2 14:41:25 EST 2004
i686 athlon i386 GNU/Linux

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 101

The only other job-type we will review is the custom plug-in. This will be the mainstay of

our job submission process so it is important to review how it works.

In addition to using this plug-in to submit complex jobs, you can use this plug-in to create

additional custom Xgrid plug-ins without writing any code or changing any user interface

settings. The simple idea behind this plug-in is that every Xgrid job task is a command-

line string sent to an agent. By specifying the executable name and the number and types

of the arguments, you can create a template that will create a list of command line strings

and will be usable as a plug-in in the future.

The interface for this dialogue has been kept very clean, although the use of abbrevia-

tions such as “Working Dir” and “Stdin File” is somewhat confusing to the user. On the

other hand the assumption is that most people using this application are not your typical

user, and should be able to figure out what those abbreviations mean.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 102

The most important aspect of this whole job-type is the argument specifier. This allows

the administrator to specify what arguments need to be passed through to the clients in

addition to the commands, and are expandable. By clicking the little plus icon on the

same line as Argument 1, you can add as many additional arguments to your command

as you deem necessary. This is particularily useful if you need to pass multiple arguments

to a single command.

A screenshot of the types of possible arguments that can be added to a single command is

posted below:

As we can see here there are a maximum of 5 different types of argument specifications,

but you are allowed to pass unlimited numbers of these arguments in your job. The inter-

face here has clearly been well thought through as options are not presented to you unless

you require them through either clicking the plus or the minus buttons. This makes this

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 103

particular plug-in very easy to work through and figure out. Also the “Show Help” button

is very useful as in-depth documentation on every aspect of the plug-in is presented.

Conclusion

The Xgrid interface is certainly well polished, and from an administrative standpoint is

almost a grid-administrators dream come true. A few more features would have been nice

though such as the ability to disconnect remote agents without having to restart the con-

troller, or an option in the menu to restart the controller when it crashes as it frequently

does. As Xgrid is still a technology preview I expect that some of these functionality issues

will be ironed out prior to its debut in OS X Tiger but there are of course no guarantees

of this.

Certainly there are other grid interfaces out there, but all of them pale in comparison to

the usability that Xgrid has to offer. Considering that it will be possible to integrate this

technology right into key applications such as Maya or Photoshop in the future this tool

will certainly be a favorite amongst non-techies and techies alike who are looking for eas-

ily manageable grid software. The interface certainly falls well within the guidelines that

Allan Cooper states in his book on usability design, and I certainly feel as though the in-

terface really does a great job of taking a technical program and turning it into a very

user friendly application.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 104

Appendix 3 - Xgrid Installation Files
Xgrid installs itself to several locations on OS X. Below is a list of all the locations which

Xgrid installs itself to, and some information as to what is stored in the most important

directories.

/Applications/Xgrid BlAST.app (This is the Xgrid BLAST application)

/Applications/Xgrid.app (This is the Xgrid application)

/Library/Application Support/Xgrid

/Library/PreferencePanes/Xgrid.prefPane

 /Library/Preferences/com.apple.xgrid.agent.plist (This contains agent preferences)

/Library/Preferences/com.apple.xgrid.controller.plist (This contains controller preferences)

 /Library/Screen Savers/Xgrid.saver (This is the Xgrid ScreenSaver)

 /Library/StartupItems/GridAgent

 /Library/StartupItems/GridServer /Library/Xgrid (Contains most of the Xgrid files)

/etc/xgrid

/usr/bin/xgrid (Location of the command line tool)

/usr/libexec/xgrid (Location of the server processes)

 /usr/share/man/man1/xgrid.1 (Manual entries)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 105

Appendix 4 - Choosing the Linux Distribution
Choosing our Linux Flavor

With the object of this project being to run a cross-platform grid of some variety it is

highly necessary for us to choose a Linux distribution that will match our project goals

closely whilst providing a stable platform to work from. Some of the key factors in choos-

ing the Linux distribution we will use involve the following:

• A large repository of available programs and libraries that are easily download-

able.

• A minimal amount of dependency issues particularly surrounding the use of

GCC, Curl, and Tcl.

• Sufficient network hardware support

• Sufficient graphical hardware support

• An installation process that does not take days to get through

• A simple, clean user interface

As I have been using Linux for almost 3 years now I have had great success in the Redhat

Linux flavor, and have found that the support for the product, and the number of avail-

able packages to be far superior than other Linux distributions. With the release of Fe-

dora Core 2 however, I began to have my doubts about how committed Redhat seemed to

maintaining their home-user product line (Fedora). In Fedora Core 2 I found that de-

pendencies were often broken, the Redhat update engine seldom worked, and finding

packages that were built for the platform to be something of a nuisance as their default

package manager (Yum) had no where near as many available packages as the APT re-

positories that I had been used to on Redhat 9.

With this in mind we will be taking a look at a new distribution called Ubuntu and com-

paring it to that of Redhat’s latest Fedora distribution. We will evaluate the distributions

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 106

by gaging their usefulness in aiding the project’s goals, and we will determine which dis-

tribution we will use during the project.

The hardware specifications of the testing machine follow:

• AMD 2500+ Processor

• 1 GB PC3200 DDR

• 120 GB Western Digital Hard Drive

• ATI Radeon 9200 SE

• ASUS A7N8X NForce2 Motherboard

• Integrated Sound and LAN

Ubuntu Linux

Ubuntu is a newcomer to the Linux arena and has received wide acclaims as the Linux

distribution that “just works”. Ubuntu is an ancient African word meaning “humanity to

others” which coming from a community that has long been hailed as a techies dream

come true and an end users nightmare is quite the irony. The Ubuntu community has

been built around 4 pillars which seem to describe quite well their overall goal. The first

pillar is that all Ubuntu releases including their enterprise edition will always be free of

charge. The second is that they want to offer Ubuntu with as many accessibility features

and languages as possible in order to make it the most accessible distribution ever. The

third is that they plan to release a stable release every 6 months. Lastly they are commit-

ted to free and open source development and will continue to improve this software and

distribute these improvements freely. Bearing these things in mind it certainly appears as

though the goals of Ubuntu really are to offer humanity to the open source movement.

Ubuntu is based off the Debian distribution which was started more than a decade ago

and now has a strong following within the Linux community. Debian also has one of the

largest package management systems offering an estimated 17,000 packages freely over

the Debian package manager. Debian is arguably the fastest Linux distribution available

on the market, and is highly customizable to particular hardware architectures. This how-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 107

ever does come at a cost, and the cost is the degree of difficulty involved in the installa-

tion. Some time ago I tried to install Debian and run into issues to do with the compati-

bility of my Nvidia graphics drivers with XWindows. A week later and after a complete

kernel recompile with the integrated Nvidia drivers I still was unable to run XWindows.

These issues are not at all uncommon to most Debian users, and the frustrations of instal-

lation often mar what would otherwise be an excellent distribution. Ubuntu, however,

promises a greatly eased installation process, and looks to create an installation that is

quick and easy to configure.

The Ubuntu Linux distribution is available from multiple sources the world over and

comes in the form of an ISO CD image that must be written to a CD. The ISO is avail-

able here:

http://www.ubuntulinux.org/download/

Once the CD has been written we will reboot the computer and make sure that the first

boot device is the CDROM. Once this is done hit enter once the graphical boot loader

appears and the installation we begin.

The installation is fairly straightforward in the beginning, and prompts us for the usual

keyboard, and language configurations. The installer will automatically determine our

partition setup, and will present us with the option of either erasing the entire disk or

manually editing the partition table. We will at this point choose to manually edit the par-

tition table ourselves and setup the system to run on 10 Gigabytes of empty space I left at

the end of the drive. We will divide these resources as follows:

SWAP Partition (2GB)

/ Partition (7GB)

/Home Partition (1GB)

The SWAP partition is typically allocated double whatever the amount of memory in the

system is, and is allocated this to allow the operating system to page to the hard drive. The

/ partition is the root partition and will contain all the operating system files, folder struc-

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 108

ture and libraries that are necessary in order for the system to run. The /Home partition

will contain all my documents and downloads. It is important to note here that I created

the /Home partition separate from the root partition in the case that if the system fails I

can reinstall the operating system without having to format over the data located in that

partition. Once these steps have been taken and the new partition table written the oper-

ating system will begin its installation process. It is important to note here that Ubuntu

only provides a base installation, this installation is not customizable until the operating

system is running, at which point we can install whatever we desire.

Once the installation has finished the system will reboot and will start XWindows. I was

extremely surprised at this point as I had anticipated it to have crashed just as Debian did.

Not only did it find all my hardware including my integrated 3Com Ethernet controller.

As we can see below it successfully configures the network interface.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 109

There are a few more configurations to pass through after this point, and it asks us to

configure user names, passwords, and time-zones. Finally it prompts us to check for new

packages and update them as necessary. I said yes to this as I was tempted to see whether

it would actually download all the latest packages for everything it installed. This proved

to be just the case as APT updated basically every single package that was installed. I

thought for sure that this would break dependencies and that I would end up with a non-

functional installation, however this was not the case at all and XWindows started up

normally which was pleasantly surprising.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 110

The interface appears very clean and I was pleasantly surprised by the layout and thought

put into making this an operating system that is fairly easy to understand. The menus are

clearly categorized, and unlike many linux distributions it does not provide us with such a

massive list of installed programs that we are overwhelmed by the availability of choice.

Some of the things that you often take for granted in Windows or OS X such as the auto-

mounting of a CDROM are things that often do not work with Linux. This was not the

case with Ubuntu however and I am quite impressed that the simple things like CDROM

mounting in Nautilus (The file browser) actually worked.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 111

There are many little things that make Ubuntu a nice distribution including fully featured

media support, excellent hardware detection, and a repository system that doesn’t seem to

break dependencies as easily as most other available Linux distributions. From my initial

observations I made the call that in fact Ubuntu might be well suited to the projects goals,

however, it was time to test this as there can be no uncertainties in my Linux distribution

of choice. The first step in the testing procedure was to download and begin the installa-

tion of all the libraries that are necessary for Xgrid. As discussed earlier it is necessary to

ensure the presence of GCC which is the GNU Compiler Collection for Linux and is

necessary in order to successfully compile XGrid. GCC provides front ends for C, C++,

Objective-C, Fortran, Java, as well as standard libraries for all of those languages. Other

necessary packages included Curl which is a command-line tool for remote retrieval (FTP,

HTTP, WebDav etc.), and Tcl which is also necessary to compile some of the other pro-

grams we will be utilizing in our project. Tcl stands for “Tool Command Language” and

provides graphical user toolkits that are highly portable and run cross-platform.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 112

Using APT (Advanced Package Tool) is a very familiar thing for me coming from a Red-

hat 9 world, and I had no problems in figuring out what commands would be necessary in

order to retrieve the necessary applications. APT as I have talked about earlier is a pack-

age management system which contains repositories of libraries and applications that are

available freely for download. The beauty of APT is that it maintains a version list of

every library and application installed on the system and by doing a simple “apt-get up-

grade” it is possible to upgrade ones entire system to the latest versions. APT also uses this

list to make sure you do not install the same application twice, so if you tell APT to install

a certain package, it knows whether or not this package is already installed and will let

you know if it is. APT is a great and easy way of dealing with Linux dependency issues as

well because when you give it the command to install something it will automatically look

at the dependencies for that library or application and download them. In our case the

first thing we need to do is obtain Tcl. This can be done by entering the following in the

terminal:

bash% apt-get install tcl

This then proceeded to download the Tcl libraries from the APT repository and install

them in the system. I then tried the next package

bash% apt-get install curl

After a quick download it installed, and I tried using curl through the command line to

verify that it was working and it did in fact return with a result

bash% curl -O http://obelix.ca/index.gif

 % Total % Received % Xferd Average Speed Time
 Curr.

 Dload Upload Total Current
Left Speed

100 48788 100 48788 0 0 70299 0 0:00:00 0:00:00
0:00:00 97452

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 113

In this command we can see that curl will retrieve the necessary file and that it is in fact

working. I found that a lot more libraries were necessary in order to get Ubuntu to the

state in which it would be ready for my 440 project. By default none of the programming

tools that are necessary to develop anything in Linux are installed on Ubuntu, so the

process of installing the necessary tools for compilation, and installation of most pro-

grams is a long and tedious task. Below is a list of the commands that were necessary to

download dependencies for both the Xgrid agent, and darwinports. (See Appendix 8 for

details)

Before we do anything it is always a good idea to run “apt-get update”. This command

runs through the online servers and retrieves the latest lists of software and updates these

lists on your system so that when you want to get a certain package, it automatically

downloads the most current version.

bash% sudo apt-get update

Now lets do a “apt-get upgrade” and an “apt-get dist-upgrade”. These commands will

automatically download the latest and most stable versions of every single piece of soft-

ware we have installed on our machine. This is a great tool as it allows an administrator to

quickly and easily update an entire system through running two commands.

bash% sudo apt-get upgrade

bash% sudo apt-get dist-upgrade

Now lets start downloading and installing all the other tools, libraries, development kits,

documentation, and applications that we will need to install both darwinports and the

linux agent.

bash% sudo apt-get install automake

bash% sudo apt-get install autoconf

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 114

bash% sudo apt-get install libtool

bash% sudo apt-get install flex

bash% sudo apt-get install bison

bash% sudo apt-get install gcc

bash% sudo apt-get install gcc-doc

bash% sudo apt-get install g++

bash% sudo apt-get install libgtk1.2-dev

bash% sudo apt-get install libpng-dev

bash% sudo apt-get install curl

bash% sudo apt-get install libxml2

bash% sudo apt-get install glib2

bash% sudo apt-get install gawk

bash% sudo apt-get install perl

bash% sudo apt-get install indent

bash% sudo apt-get install g77

bash% sudo apt-get install gtk2-devel

bash% sudo apt-get install openssl

bash% sudo apt-get install libssl0.9.7

bash% sudo apt-get install libssl-dev

bash% sudo apt-get install tcl8.4-dev

bash% sudo apt-get install tcl8.4-doc

bash% sudo apt-get install libpgtcl-dev

bash% sudo apt-get install libpgtcl-dev

bash% sudo apt-get install cvs

bash% sudo apt-get install libgrypt7

bash% sudo apt-get install libgrypt7-dev

bash% sudo apt-get installl libgrypt-doc

bash% sudo apt-get install ssl-cert

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 115

Once all of this has been done I found that I could get both the Xgrid agent and darwin-

ports to compile. Determining the requirements for the installation of the above packages,

the order in why they should be installed, and the dependencies which these packages had

was a process that took a number of hours.

Overall I have been very impressed with Ubuntu. It is a very fast Linux distribution, and

with a few hours of configuration can be made to work precisely with our projects goals.

Fedora Core 3

The Fedora project is sponsored by Redhat and is a community-supported open source

project. After Redhat 10, Redhat decided to no longer provide support for its home-user

products and instead chose to offer a free and non-Redhat supported distribution called

Fedora. Fedora is funded by Redhat, but all of the support available for the product

comes from the community of users that use it. Message boards, IRC groups, and email

lists are the forms of support that are available to Fedora users and all of them come with

the cost of $0 both for you the user and for Redhat. Redhat in this manner maintains its

image as a major Linux provider for non-enterprise consumers, and also gains a large

testing ground for its custom linux applications and environments. As mentioned earlier I

have been less than satisfied with the Fedora Core 2 distribution which has left much to be

desired, and I hope that Fedora Core 3 will prove to be a much more stable, useful distri-

bution that its predecessor.

The Fedora Core 3 Installation Process

Fedora has an absolutely massive list of packages that come on 3 CD’s and are freely

available to download at the following site:

http://download.fedora.redhat.com/pub/fedora/linux/core/3/x86_64/iso/

Interestingly Fedora is also offered in a DVD format which is actually the one I used for

the installation. The DVD weighs in at 2.46GB and includes almost every package we

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 116

need for the project. The installation itself is much more graphical than Ubuntu’s text

based installer, and for end-users is certainly a much easier method of installation (espe-

cially where partition tables are concerned). The installation starts with the same standard

setup of languages, keyboards etc. that we had in Ubuntu. It then presents us with options

as to what type of installation we want to use, and we will select custom.

At this point we are presented with a list of all the available packages and we will make

sure that we select all the development packages (particularly GCC) and the packages for

both kernel development and X development. My reason for selecting these packages is

that I am never 100% sure what packages I will be needing and it is easiest to install eve-

rything at once during installation than it is to get them later. There have been times in

the past where network cards refuse to work and I have been required to do a complete

kernel recompile so that I can manually add my own ethernet card modules. It is always

best to be prepared for the worst case scenario when working in Linux in my opinion.

Partitioning comes next and the graphical installer makes this quite easy. If we choose

automatic partitioning it will setup the drive and remove any other partitions that are cur-

rently in use. However as is the case with the Ubuntu installation we need to manually

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 117

partition everything ourself as we are running this system as a dual boot system with

Windows 2003 Server.

We will setup Fedora Core 3 in the same manner as the Ubuntu installation with the fol-

lowing partitioning setup:

SWAP Partition (2GB)

/ Partition (7GB)

/Home Partition (1GB)

Once this has been done we will configure out bootloader and ensure that our Windows

2003 Server partition is set as the default boot partition. This is only necessary because I

do not want Fedora booting by default. This can be undone later by editing the grub.conf

file located within the /boot/grub directory if need be.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 118

The network configuration wizard during the Fedora Core 3 installation

At this point we are presented with the option of configuring our ethernet card which it

has successfully detected and we have the option of either specifying our own IP adddress,

gateway, and DNS, or using a DHCP setting. As my router utilizes DHCP I will use the

default DHCP setting that is provided.

Another thing that is a very nice feature of Fedora that was no present in the installation

of Ubuntu is the option to install a firewall. This is a very important aspect of networking

that is missed sorely by Ubuntu, and is something that should definitely come enabled by

default. In Fedora not only is there a firewall installed but there is also an option to install

SELinux which stands for Security Enhanced Linux. SELinux was created by the Na-

tional Security Agency (NSA) in the US to help combat the problems Linux has with

hacking.. In short, SELinux provides an access control architecture to confine processes to

only the files they need to complete their actions. Security is outside the scope of this re-

view but it is important to keep it in mind when choosing a linux distribution, and this is

something that we will enable.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 119

A screenshot of the firewall configuration and the process of enabling Security Enhanced Linux.

Next comes the setting of the root password, installation of additional languages, and fi-

nal configuration of the time-zones. This is all very straightforward and the installation

will now begin.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 120

A screenshot of Fedora Core 3 installing.

The rest of the setup process is very straightforward and there is no reason to cover it in

any detail. Upon restart you have to agree to the license agreement, set the date and time,

set the default display settings for your monitor, create a user, and lastly test to make sure

the sound card they have chosen works. The sound in our case is not an issue we even

need to care about so I skipped this step entirely. XWindows then loaded and I was quite

pleased to find that it had successfully detected both my video card, and my network card

so no kernel recompiles would be necessary.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 121

As we can see in this screenshot the menu system in Fedora Core 3 is quite simplistic and

options are fairly well placed. I personally preferred the way that the Ubuntu menu sys-

tem was organized, as system settings and preferences to me are things that in my opinion

should be amalgamated into one single menu so as not to confuse the user. The menu sys-

tem however isn’t where we will be spending most of our time, and as what we really need

is solid package support we will now test the distribution by trying to install the necessary

packages. The default package manager that comes with Fedora is still Yum and I still find

it a much worse system than using APT. With that in mind I went and found an APT

build for Fedora which was available at FreshRPMS.net here:

http://freshrpms.net/apt/

Once APT was downloaded and installed I was able to successfully run and install the

following:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 122

bash% apt-get install tcl

bash% apt-get install curl

There was no reason to get the GCC package as Fedora Core 3 had already installed that

for me during the OS installation process. After a brief check through the APT repository

list that they now have for Fedora Core 3, they certainly appear as though they have been

busy between releases and there is now a greatly increased number of available packages

to the distribution. This tied with all the software that comes on the DVD and the rela-

tively simple installation process make Fedora Core 3 a good operating system for the

purposes of this project. On the down side their redhat-auto-updater which is supposed to

download the latest packages and fixes still does not function properly, and crashed several

times during updates.

Linux Conclusions

For the purposes of this project it is absolutely essential that the distribution I choose must

be easy to install, and although Ubuntu did not have a graphical installer, the text-based

installation was relatively painless to get through. Despite having no GCC compiler or

any programming or development tools installed, it was not too painful to aquire these

through its Advanced Package Tool. The “apt-get upgrade” feature which fetches all the

latest packages and updates actually worked, and for that reason alone I’d certainly rec-

ommend it over Fedora Core 3. For the home user Ubuntu also has several advantages as

things like multimedia support are fully functional by default and require no special con-

figuring unlike the multimedia packages that come with Redhat. There are certainly

things to appreciate about Ubuntu but it definitely does require much more configuration

than Redhat does in order to work with the goals of this project. I will leave the current

PC machine running the Ubuntu Distribution as I am very satisfied with its performance

and features.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 123

Our final choice for distribution with the remaining machines however will be to use the

Fedora Core 3 installation for due to its very large complement of packages available on

the DVD, and due to the fact that the APT system for Redhat does contain all the avail-

able packages we need as well. The reason we are choosing to stick with Redhat is not be-

cause it is the better distribution, but because it requires much less setup time so it is much

faster to rapidly deploy in our grid environment. In respect to which is the better distribu-

tion, I would certainly pick Ubuntu as the clear winner as its interface is a lot snappier,

the multimedia applications which are installed “just work” and it has a much less clut-

tered menu system that would be much easier for beginners to use.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 124

Appendix 5 - Installing the Xgrid Linux Agent
The first step in installing the Xgrid Linux agent is to acquire all the packages necessary

in order to build the agent. For simplicities sake, these packages have been downloaded to

my own webserver to simplify the retrieval process as some of the online sources for these

libraries are no longer available. Open a linux terminal and make a directory called “src”

within your home folder, and then type the following commands:

curl -O http://www.obelix.ca/xgrid-files/glib-2.4.1.tar

curl -O http://www.obelix.ca/xgrid-files/libxml2-2.6.9.tar

curl -O http://www.obelix.ca/xgrid-files/roadrunner-0.9.1.tar

curl -O http://www.obelix.ca/xgrid-files/xgrid-patched.tar

All the libraries we need will be remotely retrieved. Next we need to extract these packages like
so:

tar vxf libxml2-2.6.9.tar

tar vxf glib-2.4.1.tar

tar vxf roadrunner-0.9.1.tar

tar vxf xgridagent-patched.tar

These packages all have an extensive list of dependencies, and it is very important to

make sure that all the necessary dependencies are present. I cannot count the numbers of

countless hours that were spent resolving dependency issues, and recompiling to ensure

each dependency had been met. If dependencies are not met, the installation will fail. To

deal specifically with this issue an automated configuration script was made (See Appen-

dix 7 for details). This is very important to note because it allowed me to install the Xgrid

agent without having to manually type each line that is contained within Appendix 5.

The first package that will be compiled is the libxml package. You will notice that we add

the --PREFIX to the ./configure line. This is because we want to install all the libraries

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 125

and files within our home folder so we do not need to use ROOT access in order to utilize

the Xgrid agent. Below are the steps required:

cd libxml2-2.6.9

./configure --prefix=$HOME

make

sudo make install

Providing there are no errors here, we will move onto the glib installation:

cd ~/src/glib-2.4.1 --prefix=$HOME

./configure

make

sudo make install

Double check the /home/current-user/lib folder to make sure that both the libxml and glib files

are present. If they are not, something went wrong in the installation phase and you are probably

missing dependencies. Providing that glib successfully installed we can now install the RoadRun-

ner communication framework by typing the following into the terminal:

cd ~/src/roadrunner-0.9.1

./configure --prefix=$HOME

make

make install

Next comes the complex part of the installation phase which involves configuring the

Xgrid agent. If you just try to configure the agent with --prefix=$HOME the installation

will fail because the configure script is incapable of finding the RoadRunner libraries

without explicit direction as to where it can find these files. To install the agent type the

following commands:

cd ~/src/xgridagent-1.0.2

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 126

./configure --prefix=$HOME\
--with-roadrunner-includedir=$HOME/include/roadrunner-1.0\
--with-roadrunner-libdir=$HOME/lib

The “\” characters at the end of the line simply allow you to continue typing more pa-

rameters on a new line. When the configure script is running make sure you look at the

“locate librr” line and make sure the output is “Found” and not “Missing” otherwise the

Xgrid agent will not run. If you did not download my patched version of the Xgrid agent

(See Appendix 6 for more details) then you will manually need to open the xgridagent.c

file and comment the following lines starting on line 1647:

/*#if USE_XML_STRNCAT_NEW*/

tmp =
(xmlChar*)xmlStrncatNew(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

/*#else

tmp =
(xmlChar*)xmlStrncat(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

#endif*/

Once this is done the binary can be compiled by typing:

make

Note: One of the biggest problems I was having during the first month of the project was

the installation of Linux and the XGrid agent itself. I decided that I needed to know

whether the agent could in fact function in a Linux Environment. During my first installa-

tion of Ubuntu I was unable to obtain the GCC library (using APT) necessary to compile

the roadrunner library (BEEP) that the XGrid agent framework runs from. This proved

very problematic as it prevented the XGrid agent from running on Ubuntu at all. At this

point I removed Ubuntu and installed Fedora Core 3. I was able to obtain the necessary

GCC libraries using YUM and the roadrunner binaries installed just fine.

When the Xgrid agent is run the following message appears:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 127

./xgridagent error while loading shared libraries:
librr-0.9.so.0: cannot open shared object file: no such file or
directory

This meant that it was unable to load the shared libraries that roadrunner provides. After

doing some research about libraries and how they were linked, I found that it is necessary

to set the path to this library so that the agent knows where to find it. This library can be

defined by setting the LD_LIBRARY_PATH environment variable in either the .profile

file in the current users’ home directory, or in the .bashrc file located in the current users’

home directory. This is done like so:

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HOME/lib/pkgconfig

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

No make install is necessary in this phase as the make command will compile everything

that is necessary. The Xgrid agent should now run by typing the command:

./xgridagent 192.168.0.100

Where the IP address above is the IP of the Mac OS X controller. The Linux Xgrid

agent should now connect to the controller and be able to process any standard unix

commands passed to it. If you run a job and notice that the speed of the Linux agent is

2Ghz even though the CPU is not running at that speed you will need to edit the

xgrid.config.xml file (See Appendix 7 for further details)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 128

Appendix 6 - Xgrid Linux Agent Segfault Issues
The next issue I ran into was that of the XGrid agent failing to run. I would set the agent

to run at the controller’s IP address, and unfortunately it would crash with a segmentation

fault just after entering the newnode() function.

[optio@localhost xgridagent-1.0.2]$./xgridagent 192.168.0.102

11/05/04 10:48:45 [2662] Initialized pending tasks

11/05/04 10:48:45 [2662] Entering newnode()

Segmentation fault

This was very perplexing and after stepping through the debug by running:

[optio@localhost xgridagent-1.0.2]$bdb ./xgridagent 192.168.0.102

I then found a number of issues were presenting themselves. Below is the result from run-

ning the debug on the application.

This GDB was configured as "i386-redhat-linux-gnu"...Using host
libthread_db

library "/lib/tls/libthread_db.so.1".

(gdb) run 192.168.0.102

Starting program: /home/optio/xgridagent-1.0.2/xgridagent
192.168.0.102

Error while mapping shared library sections:

: Success.

Error while reading shared library symbols:

: No such file or directory.

[Thread debugging using libthread_db enabled]

[New Thread -150736768 (LWP 3101)]

Error while reading shared library symbols:

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 129

: No such file or directory.

Error while reading shared library symbols:

: No such file or directory.

[New Thread -150738000 (LWP 3104)]

11/05/04 11:37:27 [3101] Initialized pending tasks

11/05/04 11:37:27 [3101] Entering newnode()

[New Thread -161244240 (LWP 3105)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread -150736768 (LWP 3101)]

0x004a1d6c in memcpy () from /lib/tls/libc.so.6

(gdb) bt

#0 0x004a1d6c in memcpy () from /lib/tls/libc.so.6

#1 0x00257f9d in xmlStrncat (cur=0x804d5d2 "",

add=0x8086b30 "<?xml version=\"1.0\"?>\n<!DOCTYPE plist PUBLIC
\"-//Apple

Computer//DTD PLIST 1.0//EN\"

\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist>\n
<dict>\n

<key>correlationID</key>\n <string>0</strin"...,

len=764) at xmlstring.c:460

#2 0x0804c7be in ConvertLineBreaksToNewBuffer (

inBuf=0x8086b30 "<?xml version=\"1.0\"?>\n<!DOCTYPE plist PUBLIC
\"-//Apple

Computer//DTD PLIST 1.0//EN\"

\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist>\n
<dict>\n

<key>correlationID</key>\n <string>0</strin"...,

inLength=764) at xgridagent.c:1645

#3 0x0804c838 in WriteXMLToTextBuffer (inMessage=0x804d5d1)

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 130

at xgridagent.c:1675

#4 0x0804c268 in RegistrationRequestMessage (outMessage=0x-
feec31a0)

at xgridagent.c:1372

#5 0x08049ecf in xgridagent (simple=0x8082550, error=0xfeec324c)

at xgridagent.c:227

#6 0x080499d0 in main (argc=2, argv=0x804d5d1) at
xgridagent.c:51

As we can see here on Line #1 the function xmlStrncat is broken. This function can be

found in the xgridagent.c file and is solely responsible for the crash. After doing some re-

search, and many thanks to the mac users group at North Carolina State University I

found that this function is deprecated and needed to be removed. The original section of

the file we were concerned with looked like this:

if USE_XML_STRNCAT_NEW

tmp =
(xmlChar*)xmlStrncatNew(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

else

tmp =
(xmlChar*)xmlStrncat(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

endif

Unfortunately the xmlStrncatNew never gets called because it is not defined. Thusly it

runs the old deprecated function and causes the program to crash. By commenting out

those lines and forcing the program to use the new function this can be solved:

/*#if USE_XML_STRNCAT_NEW*/

tmp =
(xmlChar*)xmlStrncatNew(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

/*#else

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 131

tmp =
(xmlChar*)xmlStrncat(BAD_CAST("\n"),BAD_CAST(inBuf),inLength);

#endif*/

The agent then ran and I was able to successfully pass a simple test to the grid which ran

and returned the name of every computer connected to the grid at that time. The total

time that it took to get the agent working was around 7 hours.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 132

Appendix 7 - Editing the xgrid.config.xml File
Xgrid utilizes the XML language as a method for storing settings and preferences about

each agent that connects to the controller. When an agent connects, it passes some of this

relevant information to the controller such as the agent’s name and its CPU speed. On

OS X this is done automatically, however on Linux there is no such luck and the configu-

ration must be edited manually in order to set these values. XML stores variables as key,

value pairs and as such we are looking to edit the ServiceName and MaximumCPUPower

string values. It is necessary to edit this file in order to correctly setup each Linux agent

that connects to the controller. If this is not done the controller will crash because there

will be more than one agent trying to access the grid with the same name. It is also worth

while to note here that the debug level can also be set here so that an administrator can

monitor the status of the currently running agent. Adjusting the MessageLevel string will

specify what level of debug should be outputted. Below is the Xgrid Linux agents’ con-

figuration file:

<plist version="1.0">

<dict>

 <key>ServiceName</key>

 <string>Linux Client 1.0</string>

 <key>MaxTaskCount</key>3

 <string>1</string>

 <key>MaximumCPUPower</key>

 <string>2000</string>

 <key>MessageLevel</key>

 <string>3</string>

</dict>

</plist>

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 133

Appendix 8 - Automating the Installation of the
Agent, DarwinPorts, and Pov-Ray
As I had never created an automated Linux installation script of any kind, this was a bit

of a major undertaking and involved considerable learning. Constant thought had to be

given to how best to break the configuration into several steps, whilst ensuring that each

step provided adequate feedback so that if a particular section were to fail, the user could

simply re-run that section of the installation script.

One of the issues in designing these scripts was the concept of the “working directory.” I

often found myself trying to keep track of where certain things were being stored in the

filesystem, and how I could design the system so that it would be simple to move swiftly

through the file hierarchy. I decided that a “src” folder would be placed within the users

home directory to which all libraries and files would be downloaded, extracted, and in-

stalled. Sometimes the script would fail at multiple points with very terse error messages,

and it would require going through the script step by step until the error was found. It

would have been impossible to document every little challenge I had in creating this script

as the list would be endless, but this is the first script in the entire world that automates the

installation of the Xgrid agent on both the Fedora Core 3 and Ubuntu platforms and I

think that says enough in itself.

In order to begin the installation process two things must be done. First APT must be

downloaded and installed. APT7 is built into Ubuntu, but is also available for Fedora Core

3 at http://apt.freshrpms.net . For the context of this project I downloaded apt and made

it available on my own server here: http://www.obelix.ca/xgrid-files/apt-i386.rpm ,so

that all my machines would have immediate fast access to the download. Once this is

downloaded it can be installed by issuing the command:

sudo rpm -ivh apt-i386.rpm

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 134

7 See Glossary [3]

Once this is done Curl which is a command line utility for downloading remote files, must

be downloaded. This can be done by running the following commands:

sudo apt-get update

sudo apt-get install curl

Once this is done I used the curl command to retrieve the first scrip,make it executable,

and run it like so:

curl -O http://obelix.ca/xgrid-scripts/getAllScripts

chmod +x getAllScripts

./getAllScripts

The first script I created was called “getAllScripts” and its job was to retrieve all the sub-

sequent scripts that would be required to install everything. This was done by creating a

bash shell script with the following contents:

#!/bin/bash

curl -O http://www.obelix.ca/xgrid-scripts/downloadScript

curl -O http://www.obelix.ca/xgrid-scripts/StageOneInstallScript

curl -O http://www.obelix.ca/xgrid-scripts/StageTwoInstallScript

curl -O
http://www.obelix.ca/xgrid-scripts/StageThreeInstallScript

echo "Now making these executable...."

chmod +x downloadScript

chmod +x StageOneInstallScript

chmod +x StageTwoInstallScript

chmod +x StageThreeInstallScript

sleep 2

echo "Starting downloading script to install dependencies"

sleep 2

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 135

./downloadScript

The last line in this script will start the downloadScript which will download and install all

the dependencies that are needed to install the Xgrid agent, DarwinPorts, and Pov-Ray.

Determining these dependencies was a matter of sifting through the configuration out-

puts of every single compile, and ensuring that each dependency was added to the script.

The downloadScript is listed below:

#!/bin/bash

##First get all the necessary libraries and programs we need this
isn't

##always necessary and largely depends on your linux distro

##You will need to install apt in order for this to work. This is

##available here: http://apt.freshrpms.net/

echo "Getting everything we need to install Xgrid agent and Dar-
winports"

sleep 5

echo "First updating APT"

sleep 1

sudo apt-get update

echo "Now upgrading existing repositories"

sleep 2

sudo apt-get upgrade

echo "Now installing necessary components of Xgrid and DPorts"

sleep 1

sudo apt-get install automake

sudo apt-get install autoconf

sudo apt-get install libtool

sudo apt-get install flex

sudo apt-get install bison

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 136

sudo apt-get install gcc

sudo apt-get install g++

sudo apt-get install libgtk1.2-dev

sudo apt-get install libpng-dev

sudo apt-get install curl

sudo apt-get install libxml2

sudo apt-get install glib2

sudo apt-get install gawk

sudo apt-get install perl

sudo apt-get install perl-dev

sudo apt-get install indent

sudo apt-get install g77

sudo apt-get install gtk2-devel

sudo apt-get install openssl

sudo apt-get install libssl0.9.7

sudo apt-get install libssl-dev

sudo apt-get install tcl

sudo apt-get install tcl-devel

sudo apt-get install tcl8.4

sudo apt-get install tcl8.4-dev

sudo apt-get install libpgtcl-dev

sudo apt-get install libpgtcl-dev

sudo apt-get install cvs

sudo apt-get install ssl-cert

sudo apt-get install make

sudo apt-get install python

sudo apt-get install python-dev

sudo apt-get install gettext

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 137

sudo apt-get install patch

sudo apt-get install xlibs-dev

sleep 5

##Now make the directory that we will install everything to

echo "Now making the /src directory in your home folder..."

sleep 3

mkdir ~/src

cd ~/src

echo "Now downloading the necessary Xgrid files from
Obelix.ca..."

sleep 2

##Download the packages that XGrid requires

curl -O http://www.obelix.ca/xgrid-files/glib-2.4.1.tar

curl -O http://www.obelix.ca/xgrid-files/libxml2-2.6.9.tar

curl -O http://www.obelix.ca/xgrid-files/roadrunner-0.9.1.tar

curl -O http://www.obelix.ca/xgrid-files/xgrid-patched.tar

curl -O http://www.obelix.ca/xgrid-files/.bashrc

echo "..........."

sleep 1

echo "Now starting the StageOneInstallScript press ctrl-c to can-
cel if

you do not wish to continue"

sleep 10

cd ~

./StageOneInstallScript

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 138

The purpose of the “sleep” command in the above script is just so that the program will

hang for a few seconds and allow the user to view the installation process at key points.

The downloadScript will also sleep for 10 seconds at the end of the script so that the user

can cancel out if a manual install is preferred, otherwise the StageOneInstallScript is

started.

The StageOneInstallScript basically deals exclusively with the setup of the Linux Xgrid

agent. This script first extracts all the libraries and Xgrid to a src directory, and then

compiles it all.

#!/bin/bash

echo "Now extracting the tar files."

cd ~/src

sleep 5

##Extract these packages

tar -vxf libxml2-2.6.9.tar

echo "Done for libxml2"

sleep 2

tar -vxf glib-2.4.1.tar

echo "Done for glib2"

sleep 2

tar -vxf roadrunner-0.9.1.tar

echo "Done for roadrunner"

sleep 2

tar -vxf xgrid-patched.tar

echo "Done for all"

sleep 5

##Setup libxml

echo "Now setting up libxml"

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 139

sleep 2

cd libxml2-2.6.9

./configure --prefix=$HOME

make

make install

echo "Done for libxml"

sleep 2

echo "Now setting up glib2"

sleep 2

##Setup glib

cd ~/src/glib-2.4.1

./configure --prefix=$HOME

make

make install

echo "Done for glib2"

sleep 2

echo"Now I am setting the pkg_config_path and the ld_li-
brary_path"

sleep 1

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HOME/lib/pkgconfig

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

sleep 3

echo "Now setting up roadrunner"

sleep 2

##Setup roadrunner

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 140

cd ~/src/roadrunner-0.9.1

./configure --prefix=$HOME

make

make install

echo "Done for all"

sleep 2

echo "Now setting up XgridAgent"

sleep 2

##Setup XGridAgent

cd ~/src/xgridagent-1.0.1

#cp -R xgridagent-1.0.1 ../

#cd ../xgridagent-1.0.1/

./configure --prefix=$HOME \

--with-roadrunner-includedir=$HOME/include/roadrunner-1.0 \

--with-roadrunner-libdir=$HOME/lib

echo "Done for all"

sleep 2

echo "..........."

sleep 1

echo "Now starting the StageTwoInstallScript press ctrl-c to can-
cel if

you do not wish to continue"

sleep 10

cd ~

./StageTwoInstallScript

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 141

Once the StageOneInstallScript has completed the StageTwoInstallScript will begin. In

this stage the environment variables are specified, so that the agent will run. Without these

environment variable the agent will crash at runtime. It is best to also add the environ-

ment variables to the bashrc file. Below is the StageTwoInstallScript:

#!/bin/bash

cd ~/src/xgridagent-1.0.1

sleep 5

#Note if you download the non patched xgrid you will need to edit
it

#Add this to ~/.bashrc

#export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HOME/lib/pkgconfig

#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

curl -O http://obelix.ca/xgrid-scripts/bashrc

#cp bashrc ~/.bashrc

sleep 2

echo "Line added to the bashrc file: export

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HOME/lib/pkgconfig"

echo "Line added to the bashrc file: export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib "

sleep 2

echo "Starting make"

make

sleep 1

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 142

echo "Now you have installed the Xgrid agent barring no errors"

echo "You can run it by navigating to ~/src/xgridagent-1.0.1"

echo "Then run ./xgridagent 192.168.0.100 substitute your IP"

sleep 8

echo "..........."

sleep 1

echo
"**
*****************"

echo "Now starting the StageThreeInstallScript this will install

DarwinPorts and Pov-Ray"

echo
"**
*****************"

echo "Note: this is not required to run Xgrid it is merely an ad-
dition"

echo "DarwinPorts is useful because we can setup our system to
match OS X \

 very closely"

echo " "

echo "Press ctrl-c in the next 60 seconds to cancel if you do not
wish to continue"

sleep 60

cd ~

sudo ./StageThreeInstallScript

Lastly this will call the StageThreeInstallScript which is responsible for the setup of Dar-

winPorts and Pov-Ray. It is necessary to run this script as the superuser because there are

certain processes within the script that require the permissions of the superuser. It is also

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 143

important to not that the group “wheel” is created in this script because without it, Dar-

winPorts cannot install. Below is the StageThreeInstallScript:

#!/bin/bash

##Now its time to install darwinports and Pov-Ray

##we need to add the wheel group to the system so that we can in-
stall

##darwinports properly, only do this if you are using a debian
based

##distribution

#If you run into the following:

#/home/user/darwinports/bin # ./port install Pov-Ray

#can't find package darwinports

while executing

#"Package require darwinports"

(file "./port" line 34)

sudo addgroup --system wheel

sudo chmod -R 777 /usr/local

mkdir /usr/local/src

cd /usr/local/src

#Login to CVS

echo "***"

echo "The password to the CVS is blank so just hit enter"

echo "***"

sleep 3

cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od \

 login

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 144

echo "Successfully logged in, now about to download..."

sleep 2

#Downloads darwinports to /opt/local/src via CVS

cvs -d
:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od \

 co -P darwinports

sleep 1

echo "Downloads Done, install commencing"

sleep 1

#default prefix

PREFIX="/opt/local"

echo "Now getting ready to configure, press ctrl-c to stop"

sleep 10

cd darwinports/base

./configure --prefix="$PREFIX" --mandir="$PREFIX/share/man" \

 CPPFLAGS=-I/usr/include/openssl

make all

sudo make install

export PATH=$PATH:/opt/local/bin #This can go in .bashrc too

cd /opt/local/bin

./port install Pov-Ray

Once this has completed the user should have a completely functional version of Xgrid,

DarwinPorts, and Pov-Ray without having to type a single command. This has not only

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 145

allowed me to distribute my setup on my 4 PC’s but if other systems were added to my

grid it would be very simple to set them up with access.

For copies see the following files on the project CD-ROM:

• bashrc

• downloadScript

• getAllScripts

• StageOneInstallScript

• StageTwoInstallScript

• StageThreeInstallScript

Appendix 9 - Custom Pov-Ray Libraries
The default installation of Pov-Ray lacks many of the custom libraries that SU2Pov

(Sketchup to Pov-Ray) requires. Several steps were taken in setting up the distribution of

these libraries:

• Since Sketchup and the necessary libraries were only installed to my PowerBook,

I first tarred the povray include directory located in

/opt/local/share/povray-3.6/include

• This tar was then uploaded to my online web-server using an FTP program for

OS X called Transmit

• A bash script called “povray-includes” was created to download the new in-

cludes, remove the old includes, and extract the tar of the new includes in their

place. The script is detailed below:

#!/bin/bash

cd /opt/local/share/povray-3.6

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 146

sudo curl -O http://obelix.ca/povray/include.tar

sudo rm -rf /opt/local/share/povray-3.6/include

sudo tar -xvf include.tar

• SSH sessions were then started with every agent on the network, and the follow-

ing commands were run:

 curl - O http://obelix.ca/povray/povray-includes

 chmod +x povray-includes

 ./povray-includes

 cd /opt/local/share/povray-3.6/includes

 cp LENS.INC lens.inc

Once this was completed each system was individually tested by submitting a small sam-

ple Xgrid job that ran a Pov-Ray command and utilized some of these libraries.

Appendix 10 - The Rendering Script
Below is the bash script called “render_pov.sh” that was used to handle the rendering of

Pov-ray scenes without crashing the controller. The script uses my own local Apache 2

web server to download from, and calls an upload script to handle the ftp process.

#!/bin/bash

filename=$1

dir=/tmp/pov-Script

MACHINE_TYPE=`uname -s`

if ["$MACHINE_TYPE" == "Darwin"]; then

 echo "Yay, you're running a Macintosh"

 echo "This is the $filename argument"

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 147

 pwd

 curl -O
http://192.168.0.110/xgrid/povray-files/$filename".pov"

 /opt/local/bin/povray $filename".pov" +W640 +H480

 sleep 1

 pwd

 ./ftpUpload $filename".png"

elif ["$MACHINE_TYPE" == "Linux"]; then

 mkdir /tmp/pov-script

 chmod 777 /tmp/pov-script

 echo "Yay, you're running a Linux box"

 pwd

 cd /tmp/pov-script

 curl -O http://192.168.0.110/xgrid/ftp-client/ftpUpload

 chmod +x ftpUpload

 curl -O
http://192.168.0.110/xgrid/povray-files/$filename.pov

 /opt/local/bin/povray $filename.pov +W640 +H480 +A
&>$filename.txt

 sleep 1

 pwd

 ./ftpUpload $filename.png

 ./ftpUpload $filename.txt

 echo "Hopefully finished rendering scripts, they are avail-
able on the server"

fi

The FTP script used called from within the render_pov.sh script handles the FTP upload-

ing, and takes a filename as an argument. It was necessary to have the FTP script separate

as it would produce end of file exceptions if it was included within the context of the last

script and I could not figure out a way to resolve the issue.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 148

#!/bin/bash

uploadFilename=$1

_host=192.168.0.110

_user=optix

_pass=34123

ftp -n $_host <<EOF

user $_user $_pass

cd xgrid/results/scenes

put $uploadFilename

bye

EOF

Originally I did not have to use the FTP commands and was using CURL to upload eve-

rything, but I found that occasionally CURL would fail to connect to the server, and was

far less stable in general when uploading. The command I used to do this was:

curl -T $filename".png" -u user:pass -O \

 ftp://obelix.ca/public_html/xgrid/$filename".png"

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 149

Appendix 11 - Custom Apache2.conf
Below is the customized Apache2.conf file used throughout the course of the project. Of

particular note here is the directives used in creating a CGI-bin which is used by the

Blosxom web blog which will handle the output of the Pov-ray renders. All traffic to the

web-server is denied to anyone outside of the local area network for security reasons, and

FancyIndexing is enabled to permit much more robust display of directories and their

contents.

ServerRoot "/usr/local/apache2"

DocumentRoot "/Library/WebServer/Documents"

PidFile "/private/var/run/httpd.pid"

ErrorLog logs/error_log

ServerAdmin stuart@obelix.ca

ServerName 192.168.0.110

User nobody

Group #-1

Listen 80

ScriptAlias /cgi-bin/ "/Library/WebServer/CGI-Executables/"

DirectoryIndex index.html index.htm index.php index.php3
welcome.html welcom.htm index.html.en

TypesConfig conf/mime.types

DefaultType text/plain

#LoadModules

LoadModule access_module modules/mod_access.so

LoadModule auth_module modules/mod_auth.so

LoadModule mime_module modules/mod_mime.so

LoadModule autoindex_module modules/mod_autoindex.so

LoadModule cgi_module modules/mod_cgi.so

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 150

LoadModule dir_module modules/mod_dir.so

LoadModule userdir_module modules/mod_userdir.so

LoadModule alias_module modules/mod_alias.so

LoadModule php4_module modules/libphp4.so

AddType application/x-httpd-php .php

#Directories

<Directory "/Library/WebServer/Documents">

 IndexOptions FancyIndexing VersionSort FoldersFirst

 AllowOverride None

 Order deny,allow

 Deny from all

 Allow from 127.0.0.1

 Allow from 192.168.0

</Directory>

<Directory "/Library/Webserver/CGI-Executables">

 AddHandler cgi-script .cgi .pl

 Options +ExecCGI

 Order deny,allow

 Deny from all

 Allow from 127.0.0.1

 Allow from 192.168.0

</Directory>

Appendix 12 - Gantt Chart
See the following page for a full Gantt chart and timeline of product deliverables.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 151

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 152

END NOTES
1. Beck, A., (June 27 1997). High Throughput Computing: An

 Interview with Miron Livny. Retrieved March 4, 2005, from

 http://www.cs.wisc.edu/condor/HPCwire.1

2. Mannheim, U. O., Tennessee, U. O., (November 2004). Top 500

 List 11/2004. Retrieved March 4, 2005, from

 http://www.top500.org/sublist/System.php?id=6714

3. Brown, M. C., Grid computing -- moving to a

 standardized platform. Retrieved February 24, 2005, from

 http://www-128.ibm.com/developerworks/grid/library/gr-stanplat.html

4. Saskatchewan, U. O., Further Key Developments.

 Retrieved February 24, 2005, from

 http://www.cs.usask.ca/resources/tutorials/csconcepts/2002_7/stat

 ic/tutorial/introduction/history/keydevelop.html

5. Grid.org, GRID.ORG ‚Ñ¢ - Grid Computing: The

 Evolution. Retrieved February 24, 2005, from

 http://www.grid.org/about/gc/evolution.htm

6. Grid.org, GRID.ORG ‚Ñ¢ - Grid Computing: SETI@home.

 Retrieved February 24, 2005, from

 http://www.grid.org/about/gc/seti.htm

7. Today, G., GRIDtoday: SUN LIGHTS UP $1/CPU/HR HOUR

 'SUN GRID'. Retrieved February 24, 2005, from

 http://www.gridtoday.com/05/0207/104571.html

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 153

8. IBM, IBM Grid Computing - IBM and grid - Products and

 services. Retrieved February 24, 2005, from

 http://www-1.ibm.com/grid/about_grid/ibm_grid/products_services.s

 html

9. Foley, M. J., (December 27 2004). A Peek Under Microsoft's

 Secret 'Bigtop'. Retrieved February 24, 2005, from

 http://www.microsoft-watch.com/article2/0,1995,1746291,00.asp

10. Globus, About the Globus Toolkit. Retrieved February

 24, 2005, from http://www-unix.globus.org/toolkit/about.html

11. Team, C. P., What is Condor?. Retrieved February 24,

 2005, from http://www.cs.wisc.edu/condor/description.html

12. Apple, Apple - Hardware - Video - Virginia Tech‚

 Supercomputer. Retrieved February 2, 2005, from

 http://www.apple.com/hardware/video/virginiatech/virginiatech_480.html

13. 500.org, T., TOP500 List 11/2003. Retrieved February 2,

 2005, from http://www.top500.org/list/2003/11/

14. Today, G., GRIDtoday: APPLE STORMS MARKET WITH XGrid.

 Retrieved April 1, 2005, from

 http://www.gridtoday.com/04/0112/102479.html

15. Guide to Apple Xgrid. Retrieved February 12, 2005,

 from http://images.apple.com/acg/xgrid/pdf/xgridguide.pdf

16. Parnot, C., Xgrid@Stanford. Retrieved February 24,

 2005, from

 http://cmgm.stanford.edu/~cparnot/Xgrid-stanford/html/projects/projects.html

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 154

17. Warrene, B., Mac News: Hardware : Stanford

 University Lab Builds an Xgrid. Retrieved February 24, 2005, from

 http://www.macnewsworld.com/story/35786.html

18. Crandall, R., Studies in Epidemiology. Retrieved

 February 24, 2005, from http://academic.reed.edu/epi/

19. Carter, S., Wolfgrid: the ncsu community

 supercomputer. Retrieved April 3, 2005, from

 http://packmug.ncsu.edu/wolfgrid/

20. Adams, N., xgrid@sfu - Research.

 Retrieved April 3, 2005, from:

 http://www.hpc.sfu.ca/xgridatsfu/research.php

21. Cooper, A., (January 2004). The Inmates are Running the Asylum., 150.

 Retrieved March 13, 2005.

22. Cote, D., Simple.: XGrid agent for Unix architectures. Retrieved January 12, 2005, from

 http://unu.novajo.ca/simple/archives/000026.html

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 155

BIBLIOGRAPHY

Adams, N., xgrid@sfu - Research. Retrieved April 3,

 2005, from http://www.hpc.sfu.ca/xgridatsfu/research.php

Apple, Apple - Hardware - Video - Virginia Tech‚

 Supercomputer. Retrieved February 2, 2005, from

 http://www.apple.com/hardware/video/virginiatech/virginiatech_480.html

Beck, A., (June 27 1997). High Throughput Computing: An

 Interview with Miron Livny. Retrieved March 4, 2005, from

 http://www.cs.wisc.edu/condor/HPCwire.1

Brown, M. C., (n.d.). Grid computing -- moving to a

 standardized platform. Retrieved February 24, 2005, from

 http://www-128.ibm.com/developerworks/grid/library/gr-stanplat.ht

 ml

Carter, S., Wolfgrid: the ncsu community

 supercomputer. Retrieved February 20, 2005, from

 http://packmug.ncsu.edu/wolfgrid/

Cooper, A., (January 2004). The Inmates are Running the Asylum., 150. Retrieved

 March 13, 2005.

Cote, Daniel. XGrid agent for Unix architectures.

 http://unu.novajo.ca/simple/archives/000026.html

 Crandall, R., (n.d.). Xgrid: 2 types of biology. Retrieved

 February 24, 2005, from

 http://lists.apple.com/archives/Xgrid-users/2004/Dec/msg00025.html

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 156

Foley, M. J., (December 27 2004). A Peek Under Microsoft's

 Secret 'Bigtop'. Retrieved February 24, 2005, from

 http://www.microsoft-watch.com/article2/0,1995,1746291,00.asp

Globus, (n.d.). About the Globus Toolkit. Retrieved February

 24, 2005, from http://www-unix.globus.org/toolkit/about.html

Grid.org, (n.d.). GRID.ORG ‚ - Grid Computing: SETI@home.

 Retrieved February 24, 2005, from

 http://www.grid.org/about/gc/seti.htm

Grid.org, (n.d.). GRID.ORG ‚ - Grid Computing: The

 Evolution. Retrieved February 24, 2005, from

 http://www.grid.org/about/gc/evolution.htm

Guide to Apple Xgrid. Retrieved February 12, 2005,

 from http://images.apple.com/acg/xgrid/pdf/xgridguide.pdf

IBM, (n.d.). IBM Grid Computing - IBM and grid - Products and

 services. Retrieved February 24, 2005, from

 http://www-1.ibm.com/grid/about_grid/ibm_grid/products_services.shtml

Mannheim, U. O., Tennessee, U. O., (November 2004). Charts

 for November 2004 - Application Area. Retrieved March 4, 2005,

 from http://www.top500.org/lists/2004/11/charts.php?c=0

Parnot, C., (n.d.). Xgrid@Stanford. Retrieved February 24, 2005, from

 http://cmgm.stanford.edu/~cparnot/Xgrid-stanford/html/projects/projects.html

Saskatchewan, U. O., (n.d.). Further Key Developments.

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 157

Retrieved February 24, 2005, from

http://www.cs.usask.ca/resources/tutorials/csconcepts/2002_7/static/tutorial/introduction

/history/keydevelop.html

Team, C. P., (n.d.). What is Condor?. Retrieved February 24, 2005, from

http://www.cs.wisc.edu/condor/description.html

Today, G., GRIDtoday: SUN LIGHTS UP $1/CPU/HR HOUR

 'SUN GRID'. Retrieved February 24, 2005, from

 http://www.gridtoday.com/05/0207/104571.html

---, GRIDtoday: APPLE STORMS MARKET WITH XGrid.

 Retrieved February 24, 2005, from

 http://www.gridtoday.com/04/0112/102479.html

Warrene, B., (n.d.). Mac News: Hardware : Stanford

 University Lab Builds an Xgrid. Retrieved February 24, 2005,

 from http://www.macnewsworld.com/story/35786.html

Stuart Bowness • Email: stuart@obelix.ca • UCFV ! 158

