The New C Standard

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002,2003,2004,2005 Derek M. Jones. All rights reserved.

CHANGES

CHANGES

Copyright © 2005 Derek Jones -5
The material in the C99 subsections is copyright © 1ISO. The material in the C90 and C*+ sections that is
quoted from the respective language standards is copyright © 1SO.

Credits and permissions for quoted material is given where that material appears.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phraset the time of writingis sometimes used. For this version of the material this time should be
taken to mean no later than December 2004.

16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin

references, C99 footnote number typos, and various other typos fixed.
30 May 2005 1.0 1Initial release.

v1.0a June 16, 2005

README

README

-4 This book probably needs one of these.

Commentary
While it was written sequentially, starting at sentence 1 and ending with sentence 2022, readers are unlikely
to read it in this way.

At some point you ought to read all of sentence 0 (the introduction).

The conventions used in this book are discussed on the following pages.

There are several ways in which you might approach the material in this book, including the following:

* You have read one or more sentences from the C Standard and want to learn more about them. In
this case simply locate the appropriate C sentence in this book, read the associated commentary, and
follow any applicable references.

» You want to learn about a particular topic. This pdf is fully searchable. Ok, the search options are not
as flexible as those available in a search engine. The plan is to produce separate html versions of each
C sentence and its associated commentary. For the time being only the pdf is available.

For anybody planning to print a (double sided) paper copy. Using 80siioek produces a stack of paper
that is 9.2cm (3.6inches) deep.

June 16, 2005 v1.0a

Preface

Preface

The New C Standard: An economic and cultural commentary -3

Commentary
This book contains a detailed analysis of the International Standard for the C lang§tiageluding the
library from a number of perspectives. The organization of the material is unusual in that it is based on
the actual text of the published C Standard. The unit of discussion is the individual sentences from the C
Standard (2022 of them)

Readers are assumed to have more than a passing familiarity with C.

C90

My involvement with C started in 1988 with the implementation of a C to Pascal translator (written in
Pascal). In 1991 my company was one of the three companies that were joint first, in the world, in having
their C compiler formally validated. My involvement with the world of international standards started in
1988 when | represented the UK at a WG14 meeting in Seattle. | continued to head the UK delegation at
WG14 meetings for another six years before taking more of a back seat role.

C++

Having never worked on a#€ compiler or spent a significant amount of time studyirg @y view on this
language has to be considered as a C only one. While | am a member of theHla@! | rarely attend
meetings and have only been to one IS@ Standard meeting.

There is a close association between C andatid the aim of this subsection is the same as the C90 one:
document the differences.

Other Languages

The choice ofother languageso discuss has been driven by those languages in common use today (e.g.,
Java), languages whose behavior for particular constructs is very different from C (e.g., Perl or APL), and
languages that might be said to have been an early influence on the design of C (mostly BCPL and Algol
68).

The discussion in these subsections is also likely to have been influenced by my own knowledge and
biases. Writing a compiler for a language is the only way to get to know it in depth and while | have many
used other languages | can only claim to have expertise in a few of them. Prior to working with C | had
worked on compilers and source code analyzers for Algol 60, Coral 66, Snobol 4, CHILL, and Pascal. All of
these languages might be labeled as imperative 3GLs. Since starting work with C the only other languages
I have been involved in at the professional compiler writer level are Cobol and SQL.

Common Implementations

The perceived needs of customers drive translator and processor vendors to design and produce produc
The two perennial needs of performance and compatibility with existing practice often result in vendors
making design choices that significantly affect how developers interacted with their products. The common
implementation subsections discuss some the important interactions, primarily by looking at existing imple-
mentations and at times research projects (although it needs to be remembered that many of research ide
never make it into commercial products).
| have written code generators for Intel 8086, Motorola 68000, Versal (very similar to the Zilog Z80),

Concurrent 3200, Sun SPARC, Motorola 88000, and a variety of virtual machines. In their day these
processors have been incorporated in minicomputers or desktop machines. The main hole in my cv. is ¢
complete lack of experience in generating code for DSPs and vector processors (i.e., the discussion is base
purely on book learning in these cases).

-31The document analysed is actually WG14/N1124 (available for public download from the WG14 wekwsitgen-std. org/
jtcl/sc22/wgl4d/), plus the response to DR #251. This document consists of the 1999 version of the ISO C Standard with the edits
from TC1 and TC2 applied to it (plus a few typos corrections).

v1.0a June 16, 2005

Preface

Coding Guidelines

Writing coding guidelines is a very common activity. Whether these guidelines provide any benefit other
than satisfying the itch that caused their author to write them is debatable. My own itch scratchings are based
on having made a living, since 1991, selling tools that provide information to developers about possible
problems in C source code.

The prime motivating factor for these coding guidelines subsections is money (other coding guideline
documents often use technical considerations to label particular coding constructs or practjoed as
or bad). The specific monetary aspect of software of interest to me is reducing the cost of source code
ownership. Given that most of this cost is the salary of the people employed to work on it, the performance
characteristics of human information processing is the prime consideration.

Software developer interaction with source code occurs over a variety of timescales. My own interests
and professional experience primarily deals with interactions whose timescale are measured in seconds.
For this reason these coding guidelines discuss issues that are of importance over this timescale. While
interactions that occur over longer timescales (e.g., interpersonal interaction) are important, they are not the
primary focus of these coding guideline subsections. The study of human information processing, within
the timescale of interest, largely falls within the field of cognitive psychology and an attempt has been made
to underpin the discussion with the results of studies performed by researchers in this field.

The study of software engineering has yet to outgrow the mathematical roots from which it originated.
Belief in the mathematical approach has resulted in a research culture where performing experiments is
considered to be unimportant and every attempt is made to remove human characteristics from considera-
tion. Industrys’ insatiable demand for software developers has helped maintain the academic status quo by
attracting talented individuals with the appropriate skills away from academia. The end result is that most
of the existing academic software engineering research is of low quality and suffers from the problem of
being carried out by people who don't have the ability to be mathematicians or the common sense to be
practicing software engineers. For this reason the results of this research have generally been ignored.

Existing models of human cognitive processes provide a general framework against which ideas about the
mental processes involved in source code comprehension can be tested. However, these cognitive models
are not yet sophisticated enough (and the necessary empirical software engineering data is not available) to
enable optimal software strategies to be calculated. The general principles driving the discussion that occurs
in these coding guidelines subsections include:

1. the more practice people have performing some activity the better they become at performing it.

Our attitude towards what we listen to is determined by our habits. We expect things to be said in the Way$ineta-
which we are accustomed to talk ourselves: things that are said some other way do not seem the sanmgstcs adok Ii
but seem rather incomprehensible. . . . Thus, one needs already to have been educated in the way to approach
each subject.

Many of the activities performed during source code comprehension (e.g., reasoning about sequences
of events and reading) not only occur in the everyday life of software developers but are likely to have
been performed significantly more often in an everyday context. Using existing practice provides a
benefit purely because it is existing practice. For a change to existing practice to be worthwhile the
total benefit has to be greater than the total cost (which needs to include relearning costs),

2. when performing a task people make implicitly cost/benefit trade-offs. One reason people make
mistakes is because they are not willing to pay a cost to obtain more accurate information than they
already have (e.g., relying on information available in their head rather expending effort searching for
it in the real world). While it might be possible to motivate people to make them more willing pay a
greater cost for less benefit the underlying trade-off behavior remains the same,

3. peoples information processing abilities are relatively limited and cannot physically be increased (this
is not to say that the cognitive strategies used cannot be improved to make the most efficient use of

June 16, 2005 v1.0a

Preface

these resources). In many ways the economics of software development is the economics of humar

attention.

Usage

Software engineering is an experimental, not a theoretical discipline, and an attempt has been made to bas
the analysis of C on what software developers and language translators do in practice.

The source code for many of the tools used to extract the information needed to create these figures an
tables is available for download from the books web site.

Table -3.1: Occurrences of various constructs in this book.

Quantity

Kind of information

2,022
1,600
1,448
228
208
1,721

C language sentences

C library paragraphs

Citations to published books and papers
Tables

Figures

Unique cross-reference entries

v1.0a June 16, 2005

Acknowledgment

Acknowledgments

-2 The New C Standard: An economic and cultural commentary

Commentary

Thanks to Sean Corfield and later Gavin Halliday for many interesting discussions on implementing C90.
Also thanks to Clive Feather, the UK C panel, the members of WG14, and my consulting customers who
were the source of many insights.

Clive Feather reviewed most of the material in this book. Fred Tydeman reviewed the floating-point
material in all subsections. Frank Griswold provided a detailed review of over half of+then@terial.
Stephen Parker review an very early draft of some of the coding guidelines. Ken Odgers converted the C99
troff to xml.

Most of the work on the scripts and style sheets/macros use for the layout was done by Vic Kirk. Thanks
to the authors of TeXlive, grap, pic, graphviz, and a variety of 'nix based tools.

Marilyn Rash (rrocean@shore.net) copyedited 75% of the material.

Thanks to the librarians of Reading, Surrey, and Warwick Universities for providing access to their col-
lections of Journals. Thanks to all those people who made their papers available online (found via Altavista
and later Google and Citeseer).

June 16, 2005 v1.0a

Conventions

Conventions
information This is a sentence from WG14/N1124, the number on the inside margin (it would be in a bound book) is the -1
defined here sentence number and this wording has been deletedadded from/to the wording in C99 by the response to a
DR.
Commentary

This is some insightful commentary on the above sentence. We might also say something relating to this
another jssye in another sentence (see sentence number and reference heading in the outside margin—it would |
in a bound book).
Terms and phrases, suchtdah, visually appear as just demonstrated.

Rationalt Thjs s a quote from the Rationale document produced by the C Committee to put a thoughtful spin on the
wording in the standard.

Various fonts and font-styles are used to denote source code examples+e:q), keywords (e.g.else),
syntax terminals (e.ginteger-constant), complete or partial file names (e.ggbj), programs (e.g.,
make), program options (e.g5xs1234), C Standard identifiers (e.guchar_t), library functions (e.g.,
malloc) and macros (e.goffsetof).

The headers that appear indented to the left, displayed in a bold Roman font, appear in the C Standar
between the two C sentences that they appear between in this book.

C90

This section deals with the C90 version of the standard. Specifically, how it differs from the C99 version of
the above sentence. These sections only appear if there is a semantic difference (in some cases the wor
may have changed slightly, leaving the meaning unchanged).

98 . . .
DR #9817 This is the text of a DR (defect report) submitted to the ISO C Standard committee.

Response
The committees response to this DR is that this question is worth repeating at this point in the book.

This is where we point out what the difference, is any (note the change bar), and what the developer might
do, if anything, about it.

C++

1.1p1 _ o . -
P This is a sentence from the-€standard specifying behavior that is different from the above C99 sentence. The

1.1p1 in the outside margin is the clause and paragraph number of this quote irtttHet&hdard.

This is where we point out what the difference is, and what the developer might do, if anything, about it.
You believed the hype that the two languages are compatible? Get real!

Other Languages

Developers are unlikely to spend their entire professional life using a single language. This section some
times gives a brief comparison between the C way of doing things and other languages.

c t received . .
°$T?f§ bﬁfo?ﬁz We vote against the adoption of the proposed new COBOL standard because we have lost some of our source

code and don't know whether the requirements in the proposed new standard would invalidate this source.

v1.0a June 16, 2005

SSOrs

Conventions

Common Implementations

Discussion of how implementations handle the above sentence. For instance, only processors with 17 bit
integers can implement this requirement fully (note the text in the outside column—flush left or flush right
to the edge of the page—providing a heading that can be referenced from elsewhereys extensions

to support 16 bit processors in this area (the text in the outside margin is pushed towards the outside of the
page, indicating that this is where a particular issue is discussed; the text appearing in a smaller point size
is a reference to material appearing elsewhere {the number is the C sentence number}). franslated |

This is a quote from the document referenced in the outside sidebar. ggfd’\‘ew C Stan-

Coding Guidelines

General musings on how developers use constructs associated with the above sentence. Some of these
sections recommend that a particular form of the construct described in the above sentence not be used.

-11

Do it this way and save money.

A possible deviation from the guideline, for a described special case.
Something to look out for during a code review. Perhaps a issue that requires a trade off among

different issues, or that cannot be automated.

Example
An example, in source code of the above sentence.

The examples in this book are generally intended to illustrate some corner of the language. As a general
rule it is considered good practice for authors to give examples that readers should follow. Unless stated
otherwise, the examples in this book always break this rule.

1 struct {float mem;} main(void)

2 {

3 int blah; /* The /* form of commenting describes the C behavior */
4 // The // form of commenting describes the C++ behavior

5

}
Usage

A graph or table giving the number of occurrences (usually based on this books’ benchmark programs)
of the constructs discussed in the above C sentence.

June 16, 2005 v 1.0a

Conventions

v1.0a June 16, 2005

Table of Contents

Introduction

1 Scope

2 Normative references

3 Terms, definitions, and symbols

T

0

4 Conformance
5 Environment

5.1 Conceptual MOAEIS . ..o
5.1.1 Translation envirONmMeENt o e e
5.1.1.1 Program SITUCTUIEottt et e e et ettt e e e e e e e e
5.1.1.2 Translation Phasesttt

Conventions

5.0, 1.3 DIAgNOSICS ..ttt e 144
5.1.2 EXECULION ENVIFONIMENTS . ..ttt ittt e ettt et e et e e e 147
5.1.2.1 Freestanding enVIrONMENTttt 153
5.1.2.2 HOSted ENnVIFONMENtot e e e 156
5.1.2.3 Program @XECULIONttt e e e e et e e e e 182
5.2 Environmental CONSIAErationsSttt et e e 212
Lo A O g = = Tox (=] = = £ 212
5.2. 1.1 Trigraph SEOUENCES ...\ttt ettt ettt ettt 230
5.2.1.2 Multibyte CharaCters o e 235
5.2.2 Character display SEMAaNtICSttt e 249
5.2.3 Signals and iNterrUPLS e 267
5.2.4 Environmental lImits 270
5.2 4. 1 Translation IMits 273
5.2.4.2 Numerical lImits e e e 297
6 Language 381
B.1 NOTALION ...t e e 381
5.2 G0N S oottt ettt e 387
6.2.1 SCOPES Of IdENTIfIEIS . .. e e 387
6.2.2 Linkages of identifiers 417
6.2.3 Name spaces of identifiers e 435
6.2.4 Storage durations of ObJeCtS 445
8.2, D T DS ittt 469
6.2.6 Representations Of tYPeSottt 565
B.2.6.1 GENEIAl ...ttt e 565
B.2.6. 2 INTEOEI By PSS . . vttt ittt ettt 589
6.2.7 Compatible type and COmMpPOSIte tyPeottt 627
8.3 COMNVEISIONS . ottt ettt e e e e e e 649
6.3.1 ArithmetiC Operands 655
6.3.1.1 Boolean, characters, and iNntegersouiiiiiiiiiiiiiiiii e 655
6.3.1.2 BOOIEAN tYPe ..o e 676
6.3.1.3 Signed and UnSigned iINtEEISttt e e e 678
6.3.1.4 Real floating and integer 682
6.3.1.5 Real floating tyPeso 691
B.3. 1.6 COMPIEX By PES vttt e e e 695
6.3.1.7 Real and COMPIEXottt e 696
6.3.1.8 Usual arithmetiC CONVEISIONSttt e 698
6.3.2 Other Operands e 717
6.3.2.1 Lvalues, arrays, and function designatorso 717
B.3.2. 2 VO o 736
B.3.2. 3 POIM IS . oottt 739
6.4 LexiCal BlemeNtS e 766
B.4. 1 KOYWOIAS . .ttt ettt et et ettt e e e e 783
6.4, 2 [Nt IOl . . e 787
B.4.2.1 GENEIAl .. oot 787
6.4.2.2 Predefined identifiers 805
6.4.3 Universal CharaCter NAmMeSttt e 810
B.4.4 CONSEANTS . ..ot 817
6.4.4.1 INteger CONSLANTSttt ettt e e e e e et 820
6.4.4.2 Floating CONStaNtSttt et e 836
6.4.4.3 EnuMeEration CONSIANTSttt e e e e e e 857

v1.0a June 16, 2005

Conventions

6.4.4.4 Character CONSIANTS ettt e e e 860
6.4.5 StriNg [Iteralso it 889
B.4.6 PUNCIUAIONSttt ettt e e e e e 906
B.4.7 HEadBr NAMES ...\ttt e e e 912
6.4.8 Preprocessing NUMDEISt e ettt e 921
6.4.9 COMMBNES ...ttt ettt et e e e e e et e e 927

B. D EXPIS S ONS ittt ittt et e e e 933
B.5.1 PrimMary EXPrESSIONS ...ttt ettt ettt ettt et e e 967
6.5.2 POSHIX OPBIatOrS . ..ttt e 977

6.5.2.1 Array SUDSCIIPINGt 979

6.5.2.2 FUNCHION CallS 989

6.5.2.3 Structure and UNION MEMDEIS e e 1021

6.5.2.4 Postfix increment and decrement OPeratorseevereeeeneinnniiiinnnnnn. 1036

6.5.2.5 Compound terals 1044
6.5.3 UNAry OPEIatOrSttt e et 1070

6.5.3.1 Prefix increment and decrement Operatorsooiiiiiiiii i 1071

6.5.3.2 Address and indireCtion Operatorsuiiiinee et 1078

6.5.3.3 Unary arithmetic Operatorsoiiiiiiiiiiiii i, 1091

6.5.3.4 The SIZeof OPerator 1108
B.5.4 CaSt OPEIAIONS . ..o e e 1123
6.5.5 Multiplicative Operators 1133
6.5.6 AdAItIVE OPEIatOrS e 1143
6.5.7 Bitwise Shift Operators ...t e 1171
6.5.8 Relational Operatorsvvi ittt e 1187
6.5.9 EQUAlity OPEIatorSt 1202
6.5.10 Bitwise AND OPEIratorttt et e e e e 1224
6.5.11 Bitwise exclusive OR OPEIatorooiiii it 1230
6.5.12 Bitwise inclusive OR OPeratOrottt e et 1234
6.5.13 Logical AND OPBIatOr .ttt ettt et e 1238
6.5.14 Logical OR OPEIatOrttt ettt e e e e e e 1246
6.5.15 Conditional OPErator 1254
6.5.16 ASSIGNMENT OPEIALOISottt ettt ettt et ettt e e e e et e 1278

6.5.16.1 SIMple asSigNmMENt 1286

6.5.16.2 Compound asSSIgNMENTttt e 1300
6.5.17 COMMA OPEIALON . ..ottt sttt et e e e et et e 1303

6.6 CONSIANT EXPIESSIONS . . o\ttt ettt ettt ettt et e e et et e e e 1312

6.7 DEClarations o 1338
6.7.1 Storage-class SPeCIfierso 1354
B.7.2 TYPE SPECI OIS oot e 1368

6.7.2.1 Structure and UNION SPECIfIErS i e 1380

6.7.2.2 Enumeration SPeCIfIErSt e 1429

8.7, 2.3 TA0S + vttt et e 1444
B.7.3 Type qQUAlIfIEIS .. 1466

6.7.3.1 Formal definition of restrict o 1492
B.7.4 FUNCHION SPECITIEIS ..\ttt e e e 1512
B.7.5 DB aralOrS ... ottt 1537

6.7.5. 1 Pointer deClarators 1549

6.7.5.2 Array deClaratorsot e 1553

6.7.5.3 Function declarators (including prototypes) ... 1581
B. 7.0 TY P NMAIMIES ..ottt ittt et ettt e e e e e 1613

June 16, 2005 v1.0a

Conventions

B.7.7 Type definitioNS 1618
6.7.8 Initialization i i 1630
6.8 Statements and DIOCKS i 1696
6.8.1 Labeled Stalements oo 1711
6.8.2 Compound StatemMeNt e 1718
6.8.3 Expression and null statements 1720
6.8.4 SeleCtion StalemMeNtS 1728
6.8.4. 1 The if statement e e e 1732
6.8.4.2 The sWitCh StatemMeNt e et e 1737
6.8.5 lteration StatEMENTSttt e e 1752
6.8.5.1 The while statement ettt 1758
6.8.5.2 The do Statement i e 1759
6.8.5.3 The for statemeNnt o 1760
6.8.6 JUMP StatEMENTSo i 1768
6.8.6.1 The goto Statement 1773
6.8.6.2 The continUe StatemMENt i e et et 1778
6.8.6.3 The break statement i e 1782
6.8.6.4 The return statemeNt et 1785
6.9 EXternal definitionNst 1794
6.9.1 FUNCtioN definitioNs i e e 1805
6.9.2 External object definitions 1832
6.10 Preprocessing dir€CHIVES it e e e e 1838
6.10.1 Conditional INCIUSION o e 1851
6.10.2 Source file INCIUSION e 1877
6.10.3 MACrO replaCcemMeNntt 1899
6.10.3.1 Argument SUDSHIEULION 1925
6.10.3.2 The # OPBIAOrt e e 1930
6.10.3.3 The #H OPeIalOr ... e e e 1938
6.10.3.4 Rescanning and further replacement i i 1948
6.10.3.5 Scope of macro definitions ... 1954
6.10.4 LiNe CONMIOlt e e e 1965
B.10. 5 BrrOr dir€CHIVE . ..\ttt e e 1973
6.10.6 Pragma direCtiVettt 1974
6.10.7 NUILAIrECHVE ... e e e 1983
6.10.8 Predefined MacCro NAMESttt e e e et e 1984
6.10.9 Pragma OPEIatOrttt ettt ettt ettt 2009
6.11 Future language direCtiONSttt e e 2013
B.11.1 Floating By PesS . . .o ottt ettt et 2013
6.11.2 Linkages of identifiers 2014
6. 11.3 EXIEINaAl NAMESttt e e 2015
6.11.4 Character SCAPE SEUUEINCESttt ettt et ettt e et e et 2016
6.11.5 Storage-class SPeCifiers e 2018
6.11.6 FUNCLION dECIaratorsot e e e 2019
6.11.7 Function definitions 2020
6.11.8 Pragma direCtiVeSottt 2021
6.11.9 Predefined Macro NAMESttt e e e e et 2022

v1.0a June 16, 2005

Introduction m

Introduction

0 With the introduction of new devices and extended character sets, new features may be added to this Inter- Introduction
national Standard. Subclauses in the language and library clauses warn implementors and programmers of
usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future revisions
of this International Standard. They are retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for language [6.11] or library features [7.26])
is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);

— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided to
emphasize consequences of the rules described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations are provided to give advice or
guidance to implementors. Annexes provide additional information and summarize the information contained
in this International Standard. A bibliography lists documents that were referred to during the preparation of
the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.

The library clause (clause 7) is based on the 1984 /usr/group Standard.

1. Effort invested in producing the C Standard 5
2. Updates to C90 7
3. Introduction 12
4. Translation environment 12
4.1, DeVeloper EXPECIAtIONS\ttt it e e e e e 12
4.2. The language SpecCifiCationottt e e 13
4.3. Implementation ProdUCES e e e e 13
4.4, Translation teChNOIOQYo e e 14
4.4.1. Translator OPtiMIZatiONS.ottt e e 16

5. Execution environment 19
5.1. HOSt ProCessor CharaCteriStiCsttt e e e e et 19
5.1.1. Overcoming performance bottlenecks 22

B 2. RUNIME [DrarY . e 24
6. Measuring implementations 25
6.1. SPEC benChmMarkso e e 26
6.2. Other benChmarkso e 27
6.3. ProCEeSSOr MEASUIEIMEINTS\ttt ittt ettt et e e et e et e e et e et e e 27
7. Introduction 27
8. Source code cost drivers 28
8.1. Guideline CoSt/bENefito 29
8.1.1. WAt IS the COSt? ...ttt e et e e e 30
8.1.2. What is the benefit? e 30
8.1.3. SaAfEr SO AN 2 . . . e 30

8.2. Code developments place in the UNIVEISE it ienes 31
8.3, SHAffiNg ... 32
8.3.1. Training NeW Staff. e 33

8.4. RetUIM ON INVESTMENT . ..ttt et e et e et e et 33
8.4.1. Some economiCs baCKgroUNd. e e 33
8.4.1.1. DisCcoUNtiNg fOr tiMEo e 33
8.4.1.2. Taking risk iNtO @CCOUNLt 34
8.4.1.3. Net Present Value e e 35

June 16, 2005 v1.0a

_ Introduction

8.4.1.4. Estimating discount rate and risk 35

8.5, REUSING SO WA ...ttt et e e e et e 35
8.6. USING @nOther [aNQUAGEttt e e e et e 36
B 7. TS ALY ... e 36
8.8, SOftWAIE MBIIICS .ttt e et e 38
9. Background to these coding guidelines 39
9.1. Culture, knowledge, and behavior 39
9.1.1. AIMS @nd MOLIVALIONottt e e 42
9.2. Selecting guideline recommendations e 44
9.2.1. Guideline recommendations must be enforceable 46
9.2.1.1. Uses of adherence to quidelines 47
9.2.1.2. DEVIALIONS . ..ttt ettt ettt et e e e e e e a7
0.2.2. COUB FBVIBWS . .« ettt ettt ettt et et e e et e e e e e e e e e 49
9.2.3. GUIdENINE WOITING . .« .ottt e e e e e e e 49
9.3. Relationship among gUIdEliNeS e e e 50
9.4. How do guideline recommendations WOrK?ooiuii i e 50
9.5, Developer differEnCeS e 50
9.6. What do these guidelines apply 107 e e 51
9.7. When to enforce the guidelines i i e e e e 53
9.8. Other coding guidelines dOCUMENTSttt e 54
9.8.1. Those that stand out from the Crowd e 55
9.8.1.1. Bell Laboratories and the 5ESS e 55

0.8. 1.2, MIS R A L s 55
0.8 2. A .t e 56
0.9, SOMWAIE INSPECHIONS ..ttt e e e et e e e e e e 56
10. Applications 57
10.1. Impact of application dOmMain o 57
10.2. APPlICAtiON BCONOMICS ...\ttt ettt ettt et et e e et et e 58
10.3. Software arChite€CtUIe e e e e 58
10.3.1. SoOftware EVOIULIONttt et e ettt e e e 59
11. Developers 60
11.1. What do developers 02 e e e 60
11.1.1. Program understanding, NMOL.ttt e 61
11.1.1.1. Comprehension as relevanCeouiiir it e 63
11.1.2. The act of Writing SOfWArEo e 63
10,2, ProduUCHIVIEYttt e e et e e e e e e e e 64
12. The new(ish) science of people 64
12.1. Brief history of cognitive pSYChOIOgYot e 65
12.2. Evolutionary pSyCholOgyt 65
12.3. EXperimental StUdIESt e e e e 66
12.3.1. The importance Of eXPeriMeNtSt e 66
12.4. The psychology Of programmingo.o et e e 67
12.4. 0. StUAENt SUD ECES . ..ottt e e e 67
12.4.2. Other eXperimental ISSUESttt e 68
12.5. What question is being answered? e 68
12.5. 1. Base rate NEQIECE. .. ettt e e e 68
12.5.2. The conjunction fallaCy e 70
12.5.3. Availability NEUIISHIC e e 71
13. Categorization 73
13.1. Category fOrmation e e 74
13.1.1. The Defining-attribute theory e 76
13.1.2. The Prototype theory e e e e e 76
13.1.3. The Exemplar-based theory e 76
13.1.4. The Explanation-based theory i 77

v1.0a June 16, 2005

Introduction m

13.2. Measuring SIMIIAIILY et e e e e e 77
13.2.1. Predicting categorization performanCevut it 79
13.3. Cultural background and use of information 81
14. Decision making 82
14.1. DeCisSion-making Strategiesttt et e 83
14.1.1. The weighted additive rule. e 83
14.1.2. The equal Weight NEUFISTICo e e 84
14.1.3. The frequency of good and bad features heuristic.......... ...t 84
14.1.4. The majority of confirming dimensions heuristic...........o i 84
14.1.5. The satisficing heuristiC.o e 85
14.1.6. The lexicographiC heUrIStICo e 85
14.1.6.1. The elimination-by-aspects heuristiC ... i 86
14.1.7. The habitual heUriStIC.o e 86
14.2. SElECNG @ SHAEAYttt ettt ettt e e e e e 86
14.2.1. Task COMPIEXILYottt e e e e e e 87
14.2.2. RESPONSE MOAE. . ..ottt ettt e e e et e e e et e e e e ettt e 87
14.2.3. Information diSPlayot e 88
14.2.4. Agenda effects 88
14.2.5. Matching and ChOOSINGottt e e e e e e 89
14.3. The developer as deCiSION MaKETttt aans 89
14.3.1. Cognitive effort VS. CCUIACYottt e e e 89
14.3.2. Which attributes are considered important?....... ... 90
14.3.3. EMOLIONAl faCIOrSottt e e 90
14.3.4. OVErCONfIAENCE e e e e e e e 91
14.4. The impact of guideline recommendations on decision Makingcooviiiiiiiiieenneinnns 92
14.5. Managements impact on developers decision makingc.oviiiiiiiii i 93
14.5.1. Effects Of INCENLIVES o e 93
14.5.2. EffeCts Of tImMe PresSUNeottt e e e e e e 93
14.5.3. Effects of decisSion impOrtanCe e 94
14.5.4. Effects Of trainingo 94
14.5.5. Having to JUStify 0eCISIONSt e e e e e e 95
14.6. Another theory about decision makingo 95
15. Expertise 96
15, KNOWIBAGE .. oottt e e 97
15.1.1. Declarative KNOWIEAQE v e e 98
15.1.2. Procedural KNOWIBAQEo e e e e e e e 98
15.2. EUCALION ...ttt ettt et et e e e e e e s 98
15.2.0. Learned SKills o e 99
15.2.2. Cultural SKillSo e 99
TR T @8 T 11 o =) o 1] PP 99
15.3.1. Transfer of expertise to differentdomains..............oo i 100
15.4. EXpertise as Mental Sl e e e 100
15.5. Software development EXPertiSE it 100
15.6. Software developer EXPErtiSEiri i e 101
15.6.1. Is software expertise Worth acquIring?ot e 103
15,7, CodiNg SEYIE .ot e 103
16. Human characteristics 104
16.1. Physical CharaCteriStiCSt e et e 107
16.2. Mental CharaCteriStiCSttt e et 108
16.2.1. Computational power of the brain. e 109
G |V = o T Y 110
16.2.2.1. Visual manipulationoiiiii i 115
16.2.2.2. LONGEr tErM MEIMOIIES . ..o\ttt e e e e e e e e enas 116
16.2.2.3. Serial OFder e e e e 117

June 16, 2005 v1.0a

_ Introduction

defect report o

culture of Co

16.2.2.4. FOIQEIING . ..ottt ettt ettt et e e e e e e e e 117
16.2.2.5. Organized KNOWIEdgeovinii i e e 119
16.2.2.6. Errors caused by memory overflow ... 120
16.2.2.7. Memory and code COMPreNeNSIONttt 120
16.2.2.8. MEMOIY @nd @0ING . .. v vttt et ettt e e e 121
16, 2.3, A NION . . .ot e e e e 121
16.2.4. AUTOMALIZALIONottt e e e et e e e e 122
16.2.5. Cognitive SWItCH o 123
16.2.6. Cognitive effOrt. 124
16.2.7. HUM@N BITON . . ettt ettt ettt e e e et e e e e et et e e e e e e e 125
16.2.7.1. SKill-based Mistakesouiuiii i 126
16.2.7.2. Rule-based mistakes i e 126
16.2.7.3. Knowledge-based mistakes e 126
16.2.7.4. DELECHNG EITOIS . ..ottt ettt ettt e e e e e e e et 127
G 8 S TR = 1 o o == 127
16.2.8. Heuristics and DIasSes 127
16.2.8. 1. REASONING ...ttt ittt et ettt ettt et e e e 128
16.2.8.2. RAIONAIIYt e 128
16.2.8.3. RISK @Sy MM Oty ..ttt e e e e e e 129
16.2.8.4. Framing effeCtS 130
16.2.8.5. Context effeCtS s 131
16.2.8.6. Endowment effeCt 132
16.2.8.7. Representative NeUrIStICo.ouiu e 132
16.2.8.8. ANCROIING ..ot e 134
16.2.8.9. Belief MaintenanCet 135
16.2.8.10. Confirmation biasoiiiii i e 140
16.2.8.11. Age-related reasoning ability 142
16,3, PeISONAIItY ...\ttt ittt e e e e 142
17. Introduction 143
17.1. Characteristics Of the source Code i 144
17.2. What Source code t0 MEASUIE?\ttt et ettt e e et eens 144
17.3. How were the measurements Made?iniiriti e e 145
Commentary

This book is about the latest version of the C Standard, ISO/IEC 9899:1999 plus TC1 and TC2 (these
contain wording changes derived from WG14s’ responses to defect reports). It is structured as a detailec
systematic analysis of that entire language standard (clauses 1-6 in detail; clause 7, the library, is only
covered briefly). A few higher-level themes run through all this detail, these are elaborated on below. This
book is driven by existing developer practices, not ideal developer practices (whatever they might be). How
developers use computer languages is not the only important issue; the writing of translators for them anc
the characteristics of the hosts on which they have to be executed are also a big influence on the languag
specification.

Every sentence in the C Standard appears in this book (under the section heading C99). Each of thes
sentences are followed by a Commentary section, and sections dealing with €9Qtker Languages,
Common Implementations, Coding Guidelines, Example, and Usage as appropriate. A discussion of eacl
of these sections follows.

Discussions about the C language (indeed all computer languages), by developers, are often strongl
influenced by the implementations they happen to use. Other factors include the knowledge, beliefs anc
biases (commonly known as folklore, or idiom) acquired during whatever formal education or training
developers have had and the culture of the group that they current work within. In an attempt to simplify
discussions your author has attempted to separate out these various threads.

Your author has found that a common complaint made about his discussion of C is that it centers on what

4 v 1.0a June 16, 2005

1 Effort invested in producing the C Standard Introductim

the standard says, not on how particular groups of developers use the language. No apology is made for this
outlook. There can be no widespread discussion about C until all the different groups of developers start
using consistent terminology, which might as well be that of the standard. While it is true that your author’s
involvement in the C Standards’ process and association with other like-minded people has resulted in a
strong interest in unusual cases that rarely, if ever, occur in practice, he promises to try to limit himself to
situations that occur in practice, or at least only use the more obscure cases when they help to illuminate the
meaning or intent of the C Standard.

No apologies are given for limiting the discussion of language extensions. If you want to learn the details
of specific extensions, read your vendors’ manuals.

Always remember the definitive definition is what the words in the C Standard say. In responding to
defect reports the C committee have at times used the ptiragetent of the Committed his phrase hasdefect report
been used when the wording in the standard is open to more than one possible interpretation and where
committee members can recall discussions (via submitted papers, committee minutes, or committee email)
in which the intent was expressed. The Committee has generally resisted suggestions to rewrite existing,
unambiguous, wording to reflect intent (when the wording has been found to specify different behavior than
originally intended).

As well as creating a standards document the C committee also produced a rationale. This rationale docu-Rationale
ment provides background information on the thinking behind decisions made by the Committee.

Wording that appears within a sectioned area like this wording is a direct quote from the rationale (the
document used was WG14/N937, dated 17 March 2001).

No standard is perfect (even formally defined languages contain mistakes and amBigijtidhere is a
mechanism for clarifying the wording in ISO standards, defect reports (DR’s as they are commonly calted}port
The text of C99 DRs are called out where applicable.

1 Effort invested in producing the C Standard

The ANSI Committee which produced C90, grew from 13 members at the inaugural meeting, in June 1983,

to around 200 members just prior to publication of the first Standard. During the early years about 20 people

would attend meetings. There was a big increase in numbers once drafts started to be sent out for public
review and meeting attendance increased to 50 to 60 people. Meetings occurred four times a year for six
years and lasted a week (in the early years meetings did not always last a week). People probably had to
put, say, a weeks’ effort into reading papers and preparing their positions before a meeting. So in round

numbers lets’ say:

(20 people x 1.3 weeks x 3 meetings x 1 years) +
(20 people x 1.7 weeks x 4 meetings x 2 years) +
(50 people x 2.0 weeks x 4 meetings x 3 years) = 1,540 person weeks (not quite 30 years)

What about the 140 people not included in this calculation— how much time did they invest? If they
spent just a week a year keeping up with the major issues, then we have 16 person years of effort. On top
of this we have the language users and implementors reviewing drafts that were made available for public
review. Not all these sent in comments to the Committee, but it is not hard to imagine at least another 4
person years of effort. This gives the conservative figure of 50 person years of effort to produce C90.

Between the publication of C90 and starting work on the revision of C99, the C committee met twice
a year for three days; meeting attendance tended to vary between 10 and 20. There was also a significant
rise in the use of email during this period. There tended to be less preparation work that needed to be done
before meetings— say 2 person years of effort.

The C99 work was done at the ISO level, with the USA providing most of the active committee mem-
bership. The Committee met twice a year for five years. Membership numbers were lower, at about 20

June 16, 2005 v 1.0a 5

_ Introduction 1 Effort invested in producing the C Standard

ISO

X3J11o0

ISO
JTC 1 |y Information
Technology
TC 1 SC2
(Screw Threads) SC 7
TC2 (Software and
(Rolling Bearings) gineering
SC22 L P;ogrammmg
TC 243 SC23
(Civil Defence) WG 3
WG 4
TC 244 a6 conon
T(L'fla";mug) WG s
ooy (FORTRAN)
WG 14
©
WG 15

(POSIX)

WG 21
(C++)

Figure 0.1: The ISO Technical Committee structure— JTC (Joint Technical Committee, with the IEC in this case), TC (Tech-
nical Committee), SC (Standards Committee), WG (Working Group).

per meeting. This gives a figure of 8 person years. During development of C99 there was a significant
amount of discussion on the C Standards’ email list; just a week per year equates to more than 2 persol
years (the UK and Japanese national bodies had active working groups, many of whose members did nc
attend meetings).

Adding these numbers up gives a conservative total of 62 person years of effort that was invested in the
C99 document. This calculation does not include the cost of traveling or any support cost (the duplication
bill for one committee mailing was approximately $5,000).

The C committee structure

The three letters ISO are said to be derived from the Gismekmeaning “the same” (the official English

term used is International Organization for Standardization, not a permutation of these words that gives the
ordering ISO). Countries pay to be members of ISO (or to be exact standards organizations in different coun
tries pay). The size of the payment depends on a country’s gross domestic product (a measure of economi
size) and the number of ISO committees they want to actively participate in. Within each country, standards’
bodies (there can be more than one) organize themselves in different ways. In many countries it is possible
for their national standards’ body(s) to issue a document as a standard in that country. The initial standard:
work on C was carried out by one such national body — ANSI (American National Standards Institute).
The document they published was only a standard in the USA. This document subsequently went througt
the process to become an International Standard. As of January 2003, ISO has 138 national standards bodi
as members, a turnover of 150 million Swiss Francs, and has published 13,736 International Standards (b
188 technical committees, 550 subcommittees, and 2,937 working groups)(see Figure 0.1).

The documents published by ISO may be formally labeled as having a particular status. These labels
include Standard, Technical Report (Type 1, 2, or 3), and a draft of one of these kinds of documents (there
are also various levels of draft). The most commonly seen, by the public, documents are Standards an
Type 2 Technical Reports. A Type 2 Technical Report (usually referred to as simply a TR) is a document
that is believed to be worth publishing as an ISO Standard, but the material is not yet sufficiently mature to
be published as a standard. It is a kind of standard in waiting.

6 v 1.0a June 16, 2005

2 Updates to C90 Introduction m

C90
C90 was the first version of the C Standard, known as ISO/IEC 9899:1990(E) (Ritthigives a history
of prestandard development). It has now been officially superseded by C99. The C90 sections ask the
guestion: What are the differences, if any, between the C90 Standard and the new C99 Standard?
Text such this occurs (with a bar in the margin) when a change of wording can lead to a developer visible
change in behavior of a program.
Possible differences include:

» C90 said X was black, C99 says X is white.

» C99 has relaxed a requirement specified in C90.

« C99 has tightened a requirement specified in C90.

» C99 contains a construct that was not supported in C90.

If a construct is new in C99 this fact is only pointed out in the first sentence of any paragraph discussing

it. This section is omitted if the wording is identical (word for word, or there are minor word changes that

do not change the semantics) to that given in C99. Sometimes sentences have remained the same but have
changed their location in the document. Such changes have not been highlighted.

The first C Standard was created by the US ANSI Committee X3J11 (since renamed as NCITS J11). Thisxai1
document is sometimes called C89 after its year of publication as an ANSI standard (The shell and utilities
portion of POSIM68! specifies a c89 command, even although this standard references the ISO C Standard,
not the ANSI one.). The published document was known as ANSI X3.159-1989.

This ANSI standard document was submitted, in 1990, to ISO for ratification as an International Standard.
Some minor editorial changes needed to be made to the document to accommodate 1SO rules (a sed script
was used to make the changes to the troff sources from which the camera-ready copy of the ANSI and ISO
standards was created). For instance, the word Standard was replaced by International Standard and some
major section numbers were changed. More significantly, the Rationale ceased to be included as part of the
document (and the list of names of the committee members was removed). After publication of this ISO
standard in 1990, ANSI went through its procedures for withdrawing their original document and adopting
the ISO Standard. Subsequent purchasers of the ANSI standard see, for instance, the words International
Standard not just Standard.

2 Updates to C90

Part of the responsibility of an ISO Working Group is to provide answers to queries raised against any pefet report
lished standard they are responsible for. During the early 1990s, the appropriate ISO procedure seemed to

be the one dealing with defects, and it was decided to create a Defect Report log (entries are commonly
known asDRs). These procedures were subsequently updated and defect reports were riatenpreda-

tion requestdy ISO. The C committee continues to use the telefectand DR, as well as the new term
interpretation request

Standards Committees try to work toward a publication schedule. As the (self-imposed) deadline for
publication of the C Standard grew nearer, several issues remained outstanding. Rather than delay the
publication date, it was agreed that these issues should be the subject of an Amendment to the Standard.
The purpose of this Amendment was to address issues from Denmark (readable trigraphs), Japan (additional
support for wide character handling), and the UK (tightening up the specification of some constructs whose
wording was considered to be ambiguous). The title of the AmendmenCwiegrity.

As work on DRs (this is how they continue to be referenced in the official WG14 log) progressed, it
became apparent that the issues raised by the UK, to be handled by the Amendment, were best dealt with
via these same procedures. It was agreed that the UK work item would be taken out of the Amendment and
converted into a series of DRs. The title of the Amendment remained the same even though the material
that promoted the choice of title was no longer included within it.

June 16, 2005 v1.0a 7

_ Introduction 2 Updates to C90

To provide visibility for those cases in which a question had uncovered problems with wording in the pub-
lished standard the Committee decided to publish collections of DRs. The ISO document containing such
corrections is known as a Technical Corrigenddr@)and two were published for C90. A TC is normative
and contains edits to the existing standard’s wording only, not the original question or any rationale behind
the decision reached. An alternative to a TC is a Record of RespBRea(non-normative document.

Wording from the Amendment, the TCs and decisions on defect reports that had not been formally
published were integrated into the body of the C99 document.

A determined group of members of X3J11, the ANSI Committee, felt that C could be made more attrac-
tive to numerical programmers. To this end it was agreed that this Committee should work toward producing

NCEG a technical report dealing with numerical issues.

The Numerical C Extensions GrouNCEG was formed on May 10, 1989; its official designation was
X3J11.1. The group was disbanded on January 4, 1994. The group produced a number of internal, commi
tee reports, but no officially recognized Technical Reports were produced. Topics covered included: com-
pound literals and designation initializers, extended integers via a header, complex arithmetic, restricted
pointers, variable length arrays, data parallel C extensions (a considerable amount of time was spent ol
discussing the merits of different approaches), and floating-point C extensions. Many of these reports were

base doc.1 sed as the base documents for constructs introduced into C99.

Support for parallel threads of execution was not addressed by NCEG because there was already an ANS
Committee, X3H5, working toward standardizing a parallelism model and Fortran and C language bindings
to it.

C++

Many developers view € as a superset of C and expect to be able to migrate C coderto/thile this

book does not get involved in discussing the major redesigns that are likely to be needed to make effective
use of G+, it does do its best to dispel the myth of C being a subset-ef There may be a language that

is common to both, but these sections tend to concentrate on the issues that need to be considered whe
translating C source using aranslator.

What does the € Standard, ISO/IEC 14882:1998(E), have to say about constructs that are in C99?

» Wording is identical Say no more.

* Wording is similar. Slight English grammar differences, use of terminology differences and other
minor issues. These are sometimes pointed out.

« Wording is different but has the same meanifige sequence of words is too different to claim they
are the same. But the meaning is appears to be the same. These are not pointed out unless the
highlight a G+ view of the world that is different from C.

« Wording is different and has a different meaningere the G+ wording is quoted, along with a
discussion of the differences.

* No C+ sentence can be associated with a C99 sentenus.often occurs because of a construct that
does not appear in ther€Standard and this has been pointed out in a previous sentence occurring
before this derived sentence.

There is a stylized form used to comment source code associated witli*Chehavior */— and G+—
// behavior.

The precursor to € was known as C with Classes. While it was being developedeRisted in an
environment where there was extensive C expertise and C source code. Attempts by Stroustrup to introduc
incompatibilities were met by complaints from his usé#s?

The intertwining of C and &, in developers mind-sets, in vendors shipping a single translator with a
language selection option, and in the coexistence of translation units written in either language making up
one program means that it is necessary to describe any differences between the two.

8 v 1.0a June 16, 2005

2 Updates to C90 Introduction m

The April 1989 meeting of WG14 was asked two questions by ISO: (1) shouldt#thiau@uage be stan-
dardized, and (2) was WG14 the Committee that should do the work? The decision on (1) was very close,
some arguing that-€ had not yet matured sufficiently to warrant being standardized, others arguing that
working toward a standard would stabilize the language (constant changes to its specification and implemen-
tation were causing headaches for developers using it for mission-critical applications). Having agreed that
there should be a+€ Standard WG14 was almost unanimous in stating that they were not the Committee
that should create the standard. During April 1991 WG21, the I$SO8tandards Committee was formed;
they met for the first time two months later.

In places additional background information of+@ provided. Particularly where different concepts,
or terminology, are used to describe what is essentially the same behavior.

In a few places constructs available ir+Cbut not C, are described. The rationale for this is that a C
developer, only having a+€ translator to work with, might accidentally use a+@onstruct. Many &r
translators offer a C compatibility mode, which often does little more than switch off support for a-few C
constructs. This description may also provide some background about why things are different in C

Everybody has a view point, even the creator of Bjarne Stroustrup. But the final say belongs to the
standards’ body that oversees the development of language standards, SC22. The following was the initial
position.

Resolutions Prepared at the Plenary Meeting of
ISO/IEC JTC 1/SC22
Vienna, Austria
September 23—-29, 1991
Resolution AK Differences between C anid-C

Notwithstanding that C and € are separate languages, ISO/IEC JTC1/SC22 directs WG21 to document
differences in accordance with ISO/IEC TR 10176.

Resolution AL WG14 (C) and WG21+€ Coordination

While recognizing the need to preserve the respective and different goals of CrankbO/IEC JTC1/SC22
directs WG14 and WG21 to ensure, in current and future development of their respective languages, that
differences between C and-Care kept to the minimum. The word "differences" is taken to refer to strictly
conforming programs of C which either are invalid programs i+ @©r have different semantics in+€

This position was updated after work on the first Gtandard had been completed, but too late to have any
major impact on the revision of the C Standard.

Resolutions Prepared at the Eleventh Plenary Meeting of
ISO/IEC JTC 1/SC22
Snekkersten, Denmark
August 24-27, 1998
Resolution 98-6: Relationship Between the Work of WG21 and that of WG14

Recognizing that the user communities of the C and @nguages are becoming increasingly divergent,
ISO/IEC JTC 1/SC22 authorizes WG21 to carry out future revisions of ISO/IEC 14882:1998 (Programming
Language €+) without necessarily adopting new C language features contained in the current revision to
ISO/IEC 9899:1990 (Programming Language C) or any future revisions thereof.

ISO/IEC JTC 1/SC22 encourages WG14 and WG21 to continue their close cooperation in the future.

June 16, 2005 v 1.0a 9

_ Introduction 3 Introduction

Other Languages

Why are other languages discussed in this book? Developers are unlikely to spend their entire working life
using a single language (perhaps some Cobol and Fortran programmers may soon achieved this).

C is not the only programming language in the world (although some developers act as-if it were). Char-
acteristics of other languages can help sharpen a developer's comprehension of the spirit (design, flavo
world-view) of C. Some of C’s constructs could have been selected in several alternative ways, others
interrelate to each other.

The functionality available in C can affect the way an algorithm is coded (not forgetting individual per-
sonal differenced¥’®:1070) Sections of source may only be written that way because that is how things are
done in C; they may be written differently, and have different execution time charactefistits) other
languages. Appreciating the affects of C language features in the source they write can be very difficult for
developers to do, rather like a fish trying to understand the difference between water and dry land.

Some constructs are almost universal to all programming languages, others are unique to C (and ofter
C++). Some constructs are common to a particular class of languages— algorithmic, functional, imperative,
formal, and so on. The way things are done in C is not always the only way of achieving the same result,
or the same algorithmic effect. Sometimes C is unique. Sometimes C is similar to what other languages do
Sometimes there are languages that do things very differently from C, either in implementing the same idea
or in having a different view of the world.

It is not the intent to claim that C or any other language is better or worse because it has a particular
design philosophy, or contains a particular construct. Neither is this subsection intended as a survey of wha
other languages do. No attempt is made to discuss any other language in any way apart from how it is
similar or different from C. Other languages are looked at from the C point of view.

Developers moving from C to another language will, for a year or so (or longer depending on the time
spent using the new language), tend to use that language in a C-like style (much the same as people learnir
English tend to initially use the grammar and pronunciations of their native language; something that fluent
speakers have no trouble hearing).

Your author’s experience with many C developers is that they tend to Have e only language worth
knowing attitude This section is unlikely to change that view and does not seek to. Some knowledge of
how other languages do things never hurt.

There are a few languages that have stood the test of time, Cobol and Fortran for example. While Pasca
and Ada may have had a strong influence on the thinking about how to write maintainable, robust code,
they have come and gone in a relatively short period of time. At the time of this writing there are six
implementations of Ada 95. A 1995 surf®}! of language usage found 49.5 million lines of Ada 83
(C89 32.5 million, other languages 66.18 million) in DoD weapon systems. The lack of interest in the
Pascal standard is causing people to ask whether it should be withdrawn as a recognized standard (IS¢
rules require that a standard be reviewed every five years). The Java language is making inroads into th
embedded systems market (the promise of it becoming the lingua franca of the Internet does not seem t
have occurred). It is also trendy, which keeps it in the public eye. Lisp continues to have a dedicated user
base 40 years after its creation. A paper praising its use, over C, has even beerl3#fitten.

The references for the other languages mentioned in this book are!®22dalgol 6813471 APL,[634]
BCPL 18I CHILL, 638 Cobol[14 Fortran82 Lispl®3% (Schem&93]), Modula-2[%2¢! Pascal®1 per[1375]
PL/1[613 Snobol 4% and SQL21]

References for the implementation of languages that have significant differences from C includ&hPL,
functional languageld934 and ML

Common Implementations

10 v 1.0a June 16, 2005

3 Introduction Introduction m

1BV IVIathematical
1954 FORmula TRANslating System

FORTRAN

COBOL

1960 First officially published version
COBOL 68
1968 published by USASI
FORTRAN 66

1966 ANSI X3.9-1966

COBOL
1974 ANSI X3.23-1974
1977 FORTRAN 77 COBOL The C Programming Language

‘ ANSI X3.9-1978 ISO 1989:1978 by Kernighan & Ritchie

1979 Stroustrup starts work on C with classes

1980 FORTRAN ISO 1539-1980(E)

1983 ANSI C committee formed
\
1985 COBOL The C++ Programming Language
" ISO 1989:1985 by Bjarne Stroustrup
1989 ANSI C Standard ANSI X3.159-1989 WG4 turns down offer

to standardise C++

Control of C Stdndard moves to
1990 ISO/IEC JTC 1/SC22 WG14 ISO/IEC JTC 1/SC22 WG2I formed
v ISO/IEC 9899:4990 published

1991 Fortran 90 ISO 1539:1991(E)
\ 4

Intrinsic Functions
1192 ISO 1989:1985/Amd.1:1992

Corrections ISO/IEC 9899/COR1:1994

1994 ISO 1989:1985/Amd.2:1994 Technical Corrigendum 1

ISO/IEC 989/ AMD1:1995

1995 Amendment 1 Work starts on

revising the C Standard

* C Integgjty
1996 ISO/IEC 9899/COR1:1996
Technical Corrigendum 2
v

1997 Fortran 95 ISO/IEC 1539-1:1997

The Java Language Specific:

v
Conditional Compilation .
1(198 ISO/IEC 1539-3:1998 C++ ISO/IEC 14882:1998

ISO/IEC 9899:1999 replaces Java withdrawn from ISO z

1999 ISO/IEC 9899:1990 ECMA standardization proc

2000 Varying Length Character Strings
+ ISO/IEC 1539-2:2000

2002

v
ISO/IEC TR18037 ISO/IEC 14882/TC1:2003

2003 Embedded C Technical Corrigendum 1

* ISO/IEC TR18015
2004 C++ Performance

Figure 0.2: Outline history of the C language and a few long-lived languages. (BK€kdescribes the earliest history of
Fortran.)

June 16, 2005 v 1.0a 11

_ Introduction 4 Translation environment

developer
expectations

3 Introduction

This subsection gives an overview of translator implementation issues. The specific details are discussed il
the relevant sentence. The following are the main issues.

 Translation environmenfThis environment is defined very broadly here. It not only includes the lan-
guage specification (dialects and common extensions), but customer expectations, known translatior
technology and the resources available to develop and maintain translators. Like any other application
development project, translators have to be written to a budget and time scale.

» Execution environmentThis includes the characteristics of the processor that will execute the pro-
gram image (instruction set, number of registers, memory access characteristics, etc.), and the runtime
interface to the host environment (storage allocation, function calling conventions, etc.).

» Measuring implementation8leasurements on the internal working of translators is not usually pub-
lished. However, the execution time characteristics of programs, using particular implementations,
is of great interest to developers and extensive measurements are made (many of which have bee
published).

4 Translation environment

The translation environment is where developers consider their interaction with an implementation to oc-
cur. Any requirement that has existed for a long period of time (translators, for a variety of languages,
have existed for more than 40 years; C for 25 years) establishes practices for how things should be done
accumulates a set of customer expectations, and offers potential commercial opportunities.

Although the characteristics of the language that need to be translated have not changed significantly
several other important factors have changed. The resources available to a translator have significantl
increased and the characteristics of the target processors continue to change. This increase in resources &
need to handle new processor characteristics has created an active code optimization research community

4.1 Developer expectations
Developers have expectations about what language constructs mean and how implementations will proces
them. At the very least developers expect a translator to accept their existing source code and generate to
program image from it, the execution time behavior being effectively the same as the last implementation
they used. Implementation vendors want to meet developer expectations whenever possible; it reduces th
support overhead and makes for happier customers. Authors of translators spend a lot of time discussin
what their customers expect of their product; however, detailed surveys of customer requirements are rarel
carried out. What is available is existing source code. It is this existing code base that is often taken
as representing developers expectations (translators should handle it without complaint, creating program
that deliver the expected behavior).

Three commonly encountered expectations are good performance, low code expansion ratio, and nc
surprising behavior; the following describes these expectations in more detail.

1. C has a reputation for efficiencitis possible to write programs that come close to making optimum
usage of processor resources. Writing such code manually relies on knowledge of the processol
and how the translator used maps constructs to machine code. Very few developers know enougt
about these subjects to be able to consistently write very efficient programs. Your author sometimes
has trouble predicting the machine code that would be generated when using the compilers he hac
written. As a general rule, your author finds it safe to say that any ideas developers have about the
most efficient construct to use, at the statement level, are wrong. A cost effective solution is to not
worry about statement level efficiency issues and let the translator look after things.

2. C has a reputation for compactnesghe ratio of machine code instructions per C statement is of-
ten a small number compared to other languages. It could be said that C is a WYSIWYG language,

12 v 1.0a June 16, 2005

4 Translation environment Introductiom

the mapping from C statement to machine code being simple and obvious (leaving aside what an

optimizer might subsequently do). This expectation was used by some members of WG14 as an ar-
gument against allowing the equality operator to have operands with structure type; a single operator

potentially causing a large amount of code, a comparison for each member, to be generated. The
introduction of theinline function-specifier has undermined this expectation to some degrelem(é:et:ﬁgr
pending on whethetnline is thought of as a replacement for function-like macros, or the mhmntj

of functions that would not have been implemented as macros).

3. C has a reputation for being a consistent languadgevelopers can usually predict the behavior
of the code they write. There are few dark corners whose accidental usage can cause constructs to
behave in unexpected ways. While the C committee can never guarantee that there would never be
any surprising behaviors, it did invest effort in trying to ensure that the least-surprising behaviors
occurred.

4.2 The language specification

The C Standard does not specify everything that an implementation of it has to do. Neither does it preveﬁrhon im-
vendors from adding their own extensions. C is not a registered trademark that is policed to ensure iR "\egﬁmgﬂggz
mentations follow its requirements; unlike Ada, which until recently was a registered trademark, ownedspsgification
the US Department of Defense, which required that an implementation pass a formal validation procedure
before allowing it to be called Ada. The C language also has a history— it existed for 13 years before a
formally recognized standard was ratified.

The commercial environments in which C was originally used have had some influence on its specifica-
tion. The C language started life on comparatively small platforms and the source code of a tramstator (
the portable C compil&°ll) was available for less than the cost of writing a new one. Smaller hardware
vendors without an established customer base, were keen to promote portability of applications to their
platform. Thus, there were very few widely accepted extensions to the base language. In this environment
vendors tended to compete more in the area of available library functions. For this reason, significant de-
veloper communities, using different dialects of C, were not created. Established hardware vendors are
not averse to adding language extensions specific to their platforms, which resulted in several widely used
dialects of both Cobol and Fortran.

Implementation vendors have found that they can provide a product that simply follows the requirements
contained in the C Standard. While some vendors have supplied options to support for some prestandard
language features, the number of these features is small.

Although old source code is rarely rewritten, it still needs a host to run on. The replacement of old hosts
by newer ones means that either existing source has to be ported, or new software acquired. In both cases
it is likely that the use of prestandard C constructs will diminish. Many of the programs making use of C
language dialects, so common in the 1980s, are now usually only seen executing on very old hosts. The few
exceptions are discussed in the relevant sentences.

4.3 Implementation products

Translators are software products that have customers like any other application. The companies that pro-
duce them have shareholders to satisfy and, if they are to stay in business, need to take commercial issues
into account. It has always been difficult to make money selling translators and the continuing improvement
in the quality of Open Source C translators makes it even harder. Vendors who are still making most of
their income by selling translators, as opposed to those who need to supply one as part of a larger sale, need
to be very focused and tend to operate within specific markets. For instance, some choose to concentrate
on the development process (speed of translation, integrated development environment, and sophisticated
debugging tools), others on the performance of the generated machine code (KAP & Associates, purchased
by Intel, for parallelizing scientific and engineering applications, Code Play for games developers targeting
the Intel x86 processor family). There are even specialists within niches. For instance, within the embedded
systems market Byte Craft concentrates on translators for 8-bit processors. Vendors who are still making

June 16, 2005 v 1.0a 13

_ Introduction 4 Translation environment

GCC

translation tech-
nology

most of their income from selling other products (e.g., hardware or operating systems) sometimes include
a translator as a loss leader. Given its size there is relatively little profit for Microsoft in selling+a C/C
translator; having a translator gives the company greater control over its significantly more profitable prod-
ucts (written in those languages) and, more importantly, mind-share of developers producing products for
its operating systems.

It is possible to purchase a license for a C translator front-end from several companies. While writing
one from scratch is not a significant undertaking (a few person years), writing anything other than a straight-
forward code generator can require a large investment. By their very nature, many optimization techniques
deal with special cases, looking to fine-tune the use of processor resources. Ensuring that correct code |
generated, for all the myriad different combinations of events that can occur, is very time-consuming and
expensive.

The performance of generated machine code is rarely the primary factor in a developers’ selection of
which translator to purchase, if more than one is available to choose from. Factors such as implicit Vendor
preference (nobody is sacked for buying Microsoft), preference for the development environment provided,
possessing existing code that is known to work well with a particular vendor’s product, and many other
possible issues. For this reason optimization techniques often take many years to find their way from
published papers to commercial products, it at'&ff]

Companies whose primary business is the sale of translators do not seem to grow beyond a certain poin
The largest tend to have a turnover in the tens of millions of dollars. The importance of translators to
companies in other lines of business has often led to these companies acquiring translator vendors, bot
for the expertise of their staff and for their products. Several database companies have acquired translatc
vendors to use their expertise and technology in improving the performance of the database products (the
translators subsequently being dropped as stand-alone products).

Overall application performance is often an issue in the workstation market. Here vendors, such as HP
SGl, and IBM, have found it worthwhile investing in translator technology that improves the quality of
generated code for their processors. Potential customers evaluating platforms using benchmarks will be
looking at numbers that are affected by both processor and translator performance— the money to be mad
from multiple hardware sales being significantly greater than that from licensing a translator to relatively
few developers. These companies consider it worthwhile to have an in-house translator development group

GCC, the GNU C compilér??Z (now renamed the GNU Compiler Collection; the tegotwill be used
here to refer to the C compiler), was distributed in source code form long before Linux and the rise of the
Open Source movement. Its development has been checkered, but it continues to grow from strength tc
strength. This translator was designed to be easily retargeted to a variety of different processors. Severe
processor vendors have provided, or funded ports of the back end to their products. Over time the opti
mizations performed by GCC have grown more sophisticated. This has a lot to do with researchers using
GCC as the translator on which to implement and test their optimization ideas. On those platforms where
its generated machine code does not rank first in performance, it usually ranks second.

The source code to several other C translators has also been released under some form of public us
license. These includécc*U along withvpo (very portable optimizét'?), the SGIPRO C compil&#-84
(which performs many significant optimizations), the TenDRA €/@roject!*4 Watcom('38l Extensible
Interactive C (an interpretef$?! and the Trimaran compiler systeffl.

The lesson to be drawn from these commercial realities is that developers should not expect a highly
competitive market in language translators. Investing large amounts of money in translator development is
unlikely to be recouped purely from sales of translators (some vendors make the investment to boost the
sales of their processors). Developers need to work with what they are given.

4.4 Translation technology

Translators for C exist within a community of researchers (interested in translation techniques) and also
translators for other languages. Some techniques have become generally accepted as the way some constr
is best implemented; some are dictated by trends that come and go. This book does not aim to documer

14 v 1.0a June 16, 2005

4 Translation environment Introductiom

every implementation technique, but it may discuss the following.

« How implementations commonly map constructs for execution by processors.
« Unusual processor characteristics, which affect implementations.

« Common extensions in this area.

* Possible trade-offs involved in implementing a construct.

» The impact of common processor architectures on the C language.

In the early days of translation technology vendors had to invest a lot of effort simply to get them to run
within the memory constraints of the available development environments. Many existed as a collection of
separate programs, each writing output to be read by the succeeding phase, the last phase being assembler
code that needed to be processed by an assembler.

Ever since the first Fortran transldf8rthe quality of machine code produced has been compared to hand-
written assembler. Initially translators were only asked to not produce code that was significantly worse than
handwritten assembler; the advantages of not having to retrain developers (in new assembly languages) and
rewrite applications outweigh the penalties of less performance. The fact that processors changed frequently,
but software did not, was a constant reminder of the advantages of using a machine-independent language.
Whether most developers stopped making the comparison against handwritten assembler because fewer of
them knew any assembler, or because translators simply got better is an open issue. In some application
domains the quality of code produced by translators is nowhere near that of handwritten a$58fhatet
many developers still need to write in machine code to be able to create usable applications.

Much of the early work on translators was primarily concerned with different language constructs and
parsing them. A lot of research was done on various techniques for parsing grammars and tools for com-
pressing their associated data tables. The work done at Carnegie Mellon on the PQCE&Stajrctduced
many of the ideas commonly used today. By the time C came along there were some generally accepted
principles about how a translator should be structured.

A C translator usually operates in several phases. The first phase (calfemhthendby compiler writerstzofootnote
and often the parser by developers) performs syntax and semantic analysis of the source code and builds a
tree representation (usually based on the abstract syntax); it may also map operations to an intermediate form
(some translators have multiple intermediate forms, which get progressively lower as constructs proceed
through the translation process) that has a lower-level representation than the source code but a higher-level
than machine code. The last phase (often calledh#tok-endby compiler writers or theode generatoby
developers) takes what is often a high-level abstract machine code (an intermediate code) and maps it to
machine code (it may generate assembler or go directly to object code). Operations, such as stora@‘éi@éﬁ%t
and optimizations on the intermediate code, could be part of one of these phases, or be a separate phase
(sometimes called thmiddle-endoy compiler writers).

The advantage of generating machine code from intermediate code is a reduction in the cost of retarget-
ing the translator to a new processor; the front-end remains virtually the same and it is often possible to
reuse substantial parts of later passes. It becomes cost effective for a vendor to offer a translator that can
generate machine code for different processors from the same source code. Many translators have a single
intermediate code. GCC currently has one, called RTL (register transfer language), but may soon have more
(a high-level, machine-independent, RTL, which is then mapped to a more machine specific form of RTL).
Automatically deriving code generators from processor descrigtiShsounds very attractive. However,
until recently new processors were not introduced sufficiently often to make it cost effective to remove the
human compiler written from the process. The cost of creating new processors, with special purpose in-
struction sets, is being reduced to the point where custom processors are likely to become very common and
automatic derivation of code generators is essential to keep these cost8 Gditii.

The other advantage of breaking the translator into several components is that it offers a solution to
the problem caused by a common host limitation. Many early processors limited the amount of memory

June 16, 2005 v 1.0a 15

_ Introduction 4 Translation environment

translator opti-
mizations

available to a program (64 K was a common restriction). Splitting a translator into independent components
(the preprocessor was usually split off from the syntax and semantics processing as a separate progran
enabled each of them to occupy this limited memory in turn. Today most translators have many megabytes
of storage available to them; however, many continue to have internal structures designed when storag
limitations were an important issue.

There are often many different ways of translating C source into machine code. Developers invariably
want their programs to execute as quickly as possible and have been sold on the idea of translators the
perform code optimization. There is no commonly agreed on specification for exactly what a translator
needs to do to be classified as optimizing, although claims made in a suitably glossy brochure is often
sufficient for many developers.

4.4.1 Translator optimizations

Traditionally optimizations have been aimed at reducing the time needed to execute a program (this is
what the termincreasing program performands usually intended to mean) or reducing the size of the
program image (this usually means the amount of storage occupied during program execution— consisting
of machine code instructions, some literal values, and object storage). Many optimizations have the effect
of increasing performance and reducing size. However, there are a some optimizations that involve making
a trade-off between performance and size.

The growth in mobile phones and other hand-held devices containing some form of processor have cre
ated a new optimization requirement— power minimization. Software developers want to minimize the
amount of electrical power required to execute a program. This optimization requirement is likely to be new
to readers; for this reason a little more detail is given at the end of this subsection.

Some of the issues associated with generating optimal machine code for various constructs are discusse
within the sentences for those constructs. In some cases transformations are performed on a relativel
high-level representation and are relatively processor-independent (see Bacon, Graham, afféi f8harp
a review). Once the high-level representation is mapped to something closer to machine code, the opti
mizations can become very dependent on the characteristics of the target processor (Bonk &d#l Riide
look at number crunchers). The general techniques used to perform optimizations at different levels of
representation can be found in various bo§Ks?-507]

The problems associated with simply getting a translator written became tractable during the 1970s.
Since then the issues associated with translators have been the engineering problem of being able to proce
existing source code and the technical problem of generating high-quality machine code. The focus of
code optimization research continues to evolve. It started out concentrating on expressions, then basi
blocks, then complete functions and now complete programs. Hardware characteristics have not stood stil
either. Generating optimized machine code can now require knowledge of code and data cache behavior
speculative execution, dependencies between instructions and their operands. There is also the issue
processor vendors introducing a range of products, all supporting the same instruction set but at different
price levels and different internal performance enhancements; optimal instruction selection can now vary
significantly across a single processor family.

Sometimes all the information about some of the components used by a program will not be known until
it is installed on the particular host that executes it; for instance, any additional instructions supported over
those provided in the base instruction set for that processor, the relative timings of instructions for that
processor model, and the version of any dynamic linked libraries. These can also change because of othe
systems software updates. Also spending a lot of time during application installation generating an optimal
executable program is not always acceptable to end users. One solution is to perform optimizations on the
program while it is executing. Because most of the execution time usually occurs within a small percentage
of a program’s machine code, an optimizer only needs to concentrate on these areas. Experimental systen
are starting to deliver interesting resufts}

Thorug!?%2 has shown that a linear (in the number of nodes and vertices in the control flow graph)
algorithm for register allocation exists that is within a factor of seven (six if no short-circuit evaluation is

16 v 1.0a June 16, 2005

4 Translation environment Introductiom

100 — . =
I Mediabench
[SPEC
75 —
5]
g
§ 50 —
5}
faw
25 —
0l ﬂ
]
add sub mult div and or xor sll srl sra fadd fsub fmul fdiv fabs total

Instruction type

Figure 0.3: Percentage dfivial computations during program execution of the SPEC and MediaBench benchmarks for various
kinds of operation. Adapted from Yi and Lil[4*23]

used) of the optimal solution for any C program that does not cogtains.

One way of finding the optimal machine code, for a given program, is to generate all possible combina-
tions of instruction and to measure which is best. Mas8&tirdesigned and built auperoptimizeto do
just that. Various strategies are used to prune the use of instruction sequences known to be nonoptimal and
the programs were kept small to ensure realistic running times.

Code optimization is a, translation time, resource-hungry process. To reduce the quantity of analysis that
needs to be performed, optimizers have started to use information on a programs’ runtime characteristics.
This profile information enables optimizers to concentrate resources on frequently executed sections of code
(it also provides information on the most frequent control flow path in conditional statements, enabling the
surrounding code to be tuned to this most likely c&¥€)!42IHowever, the use of profile information does
not always guarantee better performaHég.

The stability of execution profiles, that is the likelihood that a particular data set will always highlight
the same sections of a program as being frequently executed is an important issue. A study by@Hhilimbi
found that data reference profiles, important for storage optimization, were stable, while some other re-
searchers have found that programs exhibit different behaviors during different parts of their exétition.

Optimizers are not always able to detect all possible savings. A study by Yi and4#jaraced the
values of instruction operands during program execution. They found that a significant number of operations
could have been optimized (see Figure 0.3) had one of their operand values been known at translation time
(e.g., adding/subtracting zero, multiplying by 1, subtracting/dividing two equal values, or dividing by a
power of 2).

Power consumption optimize
. ower con-
The following discussion is based one that can be found in Hsu, Kremer and#8iabhe dominant P sumption

source of power consumption in digital CMOS circuits (the fabrication technology used in mass-produced
processors) is the dynamic power dissipatiBnwhich is based on three factors:

P x CV?F 0.1)

whereC is the effective switching capacitandé,the supply voltage, anfl the clock speed. A number of
technical issues prevent the voltage from being arbitrarily reduced, but there are no restrictions on reducing
the clock speed (although some chips have problems running at too low a rate).

For cpu bound programs simply reducing the clock speed does not usually lead to any significant saving
in total power consumption. A reduction in clock speed often leads to a decrease in performance and the
program takes longer to execute. The product of dynamic power consumption and time taken to execute

June 16, 2005 v 1.0a 17

_ Introduction 5 Execution environment

array 986
row-major
storage order

loop unrolling 1760

basic block 1699

remains almost unchanged (because of the linear relationship between dynamic power consumption an
clock speed). However, random access memory is clocked at a rate that can be an order of magnitude les
than the processor clock rate.

For memory-intensive applications a processor can be spending most of its time doing nothing but waiting
for the results of load instructions to appear in registers. In these cases a reduction in processor clock rat
will have little impact on the performance of a program. Program execution Tisnggn be written as:

T = Tcpu_busy + Tmemory_busy + T(:pu_and_mem_busy (02)
An analysis (using a processor simulation) of the characteristics of the following code:

1 for (j = 0; j < nj; j++)
2 for (i = 0; 1 < n; i++)
3 accu += A[i]l[j];

found that (without any optimization) the percentage of time spent in the various subsysteropuvdmisy0.01%
memory_busy93.99% cpu_and_mem_bus§.00%

Given these performance characteristics, a factor of 10 reduction in the clock rate and a voltage reductior
from 1.65 to 0.90 would reduce power consumption by a factor of 3, while only slowing the program down
by 1% (these values are based on the Crusoe TM5400 processor).

Performing optimizations changes the memory access characteristics of the loop, as well as potentially
reducing the amount of time a program takes to execute. Some optimizations and their effect on the perfor
mance of the preceding code fragment include the following:

» Reversing the order of the loop control variables (arrays in C are stored in row-major order) creates
spatial locality, and values are more likely to have been preloaded into the cgpthdausy18.93%,
memory_busy73.66%, cpu_and_mem_besy41%

« Loop unrolling increases the amount of work done per loop iteration (decreasing loop housekeeping
overhead and potentially increasing the number of instructions in a basic blgmk) busy0.67%,
memory_busy65.60%, cpu_and_mem_besB.73%

» Prefetching data can also be a worthwhile optimizatiopu_busy0.67%, memory_busy4.04%,
cpu_and_mem_bus5.29%

These ideas are still at the research stage and have yet to appear in commercially available translator
(support, in the form of an instruction to change frequency/voltage, also needs to be provided by processo
vendors).

At the lowest level processors are built from transistors. Which are grouped together to form logic gates.
In CMOS circuits power is dissipated in a gate when its output changes (that is it goes from 0 to 1, or from 1
to 0). Vendors interested in low power consumption try to design to minimize the number of gate transitions
made during the operation of a processor. Translators can also help here. Machine code instructions consi
of sequences of zeros and ones. Processors read instructions in chunks of 8, 16, or 32 bits at a time. For
processor with 16-bit instructions that are read 16 bits at a time it is the difference in bit patterns between
adjacent instructions that can cause gate transitions. The Hamming distance between two binary value
(instructions) is the number of places at which their bit settings differ. Ordering instructions to minimize
the total Hamming distance over the entire sequence will minimize power consumption in that area of a
processor. Simulations based on such a reordering have shown savings of 13%18720%.

18 v 1.0a June 16, 2005

5 Execution environment Introductiom

5 Execution environment

Two kinds of execution environment are specified in the C Standard, hosted and freestanding. Thegavspgent
to affect implementations in terms of the quantity of resources provided (functionality to support library
requirements— e.g., I/0, memory capacity, etc.).

There are classes of applications that tend to occur in only one of these environments, which can make it
difficult to classify an issue as being application- or environment-based.

For hosted environments C programs may need to coexist with programs written in a variety of languages.
Vendors often define a set of conventions that programs need to follow; for instance, how parameters are
passed. The popularity of C for systems development means that such conventions are often expressed in C
terms. So it is the implementations of other languages that have to adapt themselves to the C view of how
things should work.

Existing environments have affected the requirements in the C Standard library. Unlike some languages
the C language has tried to take the likely availability of functionality in different environments into account.
For instance, the inability of some hosts to support signals has meant that there is no requirement that any
signal handling (other than function stubs) be provided by an implementation. Minimizing the dependency
on constructs being supported by a host environment enables C to be implemented on a wide variety of
platforms. This wide implementability comes at the cost of some variability in supported constructs.

5.1 Host processor characteristics

It is often recommended that developers ignore the details of host processor characteristics. Howevetdty@ésssors
language was, and continues to be, designed for efficient mapping to commonly available processors. M’ﬁﬁf/“c“on
of the benchmarks by which processor performance is measured are written in C. A detailed analy$ig5af,C
needs to include a discussion of processor characteristics.

Many developers continue to show a strong interest in having their programs execute as quickly as pos-
sible, and write code that they think will achieve this goal. Developer interest in processor characteristics
is often driven by this interest in performance and efficiency. Developer interest in performance could be
considered to be part of the culture of programming. It does not seem to be C specific, although this lan-
guages’ reputation for efficiency seems to exacerbate it. There is sometimes a customer-driven requirement
for programs to execute within resource constraints (execution time and memory being the most common
constrained resources). In these cases detailed knowledge of processor characteristics may help developers
tune an application (although algorithmic tuning invariably yields higher returns on investment). However,
the information given in this book is at the level of a general overview. Developers will need to read
processor vendors’ manuals, very carefully, before they can hope to take advantage of processor-specific
characteristics by changing how they write source code.

The following are the investment issues, from the software development point of view, associated with
processor characteristics:

» Making effective use of processor characteristics usually requires a great deal of effort (for an in-
depth tutorial on getting the best out of a particular processdt&&Hpr an example of performance
forecasting aimed at future processord®¥8e The return on investment of this effort is often small (if
not zero). Experience shows that few developers invest the time needed to systematically learn about
individual processor characteristics. Preferring, instead, to rely on what they already know, articles
in magazines, and discussions with other developers. A small amount of misguided investment is no
more cost effective than overly excessive knowledgeable investment.

« Processors change more frequently than existing code. Although there are some application do-
mains where it appears that the processor architecture is relatively fixed (e.g., the Intel x86 and IBM
360/370/3080/3090/etc.), the performance characteristics of different members of the same family can
still vary dramatically. Within the other domains new processor architectures are still being regularly
introduced. The likelihood of a change of processor remains an important issue.

June 16, 2005 v 1.0a 19

_ Introduction 5 Execution environment

translator per-

formance
vs. assembler

DSP
processors

300,000 —

X 4 bits
. e 8 bits
§ A 16bfts
S 200,000 - 32 bits
8
3
3
2
£ 100,000 o\
o N & . .
= X %,a&%’d’r“ .

\ [
Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01

Year

Figure 0.4: Monthly unit sales of microprocessors having a given bus width. Adapted from #iP@yusing data supplied by

Turley).

» The commercial availability of translators capable of producing machine code, the performance of

which is comparable to that of handwritten assembler (this is not true in some ddr%hene
study*33®! found that in many cases translator generated machine code was a factor of 5-8 times
slower than hand crafted assembler) means that any additional return on developer resource inves
ment is likely to be low.

Commercial and application considerations have caused hardware vendors to produce processors aimed
several different markets. It can be said that there are often family characteristics of processors within a
given market, although the boundaries are blurred at times. It is not just the applications that are executec
on certain kinds of processors. Often translator vendors target their products at specific kinds of processor:
For instance, a translator vendor may establish itself within the embedded systems market. The processor ¢
chitectures can have a dramatic effect on the kinds of problems that machine code generators and optimizel
need to concern themselves with. Sometimes the relative performance of programs written in C, comparec
to handwritten assembler, can be low enough to question the use of C at all.

20

¢ General purpose processorBhese are intended to be capable of running a wide range of applications.

The processor is a significant, but not dominant, cost in the complete computing platform. The
growing importance of multimedia applications has led many vendors to extend existing architectures
to include instructions that would have previously only been found in DSP procé$88rsThe
market size can vary from tens of millions (Intel X8&°)) to hundreds of millions (ARNA?78l),

Embedded processorghese are used in situations where the cost of the processor and its supporting
chip set needs to be minimized. Processor costs can be reduced by reducing chip pin-out (which re
duces the width of the data bus) and by reducing the number of transistors used to build the processol
The consequences of these cost savings are that instructions are often implemented using slower tec
nigues and there may not be any performance enhancers such as branch prediction or caches (or eve
multiple and divide instructions, which have to be emulated in software). Some vendors offer a range
of different processors, others a range of options within a single family, using the same instruction set
(i.e., the price of an Intel i960 can vary by an order of magnitude, along with significant differentiation

in its performance, packaging, and level of integration). The total market size is measured in billions
of processors per year (see Figure 0.4).

« Digital Signal Processors (DSPAs the name suggests, these processors are designed for manipu-

v 1.0a June 16, 2005

5 Execution environment Introductiom

lating digital signals— for instance, decoding MPEG data streams, sending/receiving data via phone
lines, and digital filtering types of applications. These processors are specialized to perform this par-
ticular kind of application very well; it is not intended that nondigital signal-processing applications
ever execute on them. Traditionally DSPs have been used in applications where dataflow is the domi-
nating factor!'”l making the provision of handcrafted library routines crucial. Recently new markets,
such as telecoms and the automobile industry have started to use DSPs in a big way, and their appli-
cations have tended to be dominated by control flow, reducing the importance of libraries.[&fhujo
contains an up-to-date discussion on generating machine code for DSPs. The total worldwide market
in 1999 was 0.6 billion processdfg?®l individual vendors expect to sell hundreds of millions of
units.

Application Specific Instruction-set Processors (ASMte that the acronym ASIC is often heard,

this refers to an Application Specific Integrated Circuit— a chip that may or may not contain an
instruction-set processor. These processors are designed to execute a specific program. The general
architecture of the processor is fixed, but the systems developer gets to make some of the perfor-
mance/resource usage (transistors) trade-off decisions. These decisions can involve selecting the
word length, number of registers, and selecting between various possible instrifétofitie cost

of retargeting a translator to such program-specific ASIPs has to be very low to make it worthwhile.
Processor description driven code generators are starting to afpeatich take the description

used to specify the processor characteristics and build a translator for it. While the market for ASICs
exceeds $10 billion a year, the ASIP market is relatively small (but growing).

« Number crunchersThe quest for ever-more performance has led to a variety of designs that attempt
to spread the load over more than one processor. Technical problems associated with finding sufficient
work, in existing source code (which tends to have a serial rather than parallel form) to spread over
more than one processor has limited the commercial viability of such designs. They have only proven
cost effective in certain, application-specific domains where the computations have a natural mapping
to multiple processors. The cost of the processor is often a significant percentage of the complete
computing device. The market is small and the customers are likely to be individually known to the
vendor* The use of clusters of low-price processors, as used in Beowulf, could see the demise of
processors specifically designed for this maFk&t.

There are differences in processor characteristics within the domains just described. Processor design
evolves over time and different vendors make different choices about the best way to use available resources
(on chip transistors). For a detailed analysis of the issues involved for the Sun UltraSPARC processor,
see[.1429]

The profile of the kinds of instructions generated for different processors can differ in both their stati@struction
and their dynamic characteristics, even within the same domain. This was shown quite dramatiqauﬁ'ﬁ"igsg'é
Davidson, Rabung, and Whalléy/! who measured static and dynamic instruction frequencies for nine
different processors using the same translator (generating code for the different processors) on the same
source files (see Figure 0.5). For a comparison of RISC processor instruction counts, based on the SPEC
benchmarks, see McMahan and L[&8]

The following are the lessons to be learned from the later discussions on processor details:
« Source code that makes the best use of one particular processor is unlikely to make the best use of
any other processor.

» Making the best use of a particular processor requires knowledge of how it works and measurements
of the program running on it. Without the feedback provided by the measurement of dynamic program
behavior, it is almost impossible to tune a program to any host.

June 16, 2005 v 1.0a 21

_ Introduction 5 Execution environment

Digital VAX-11 X

g Harris HCX-9
=}
3
g] Nat.Semj. 32016 X &T3B1S X
= Motorola 68020
Q Intel 80386 X
2 5|
a Concurrent 3230 X Clipper X
A — IBM RT
1 —
i 6 7 8 9 10

Static frequency

Figure 0.5: Dynamic/static frequency afall instructions. Adapted from Davidsé#.’}

3,000 —
1,000 —
8
S 100
g CPU
LE
&
10 —|
DRAM
1
\ \ \ \
1980 1985 1990 1995 2000

Year

Figure 0.6: Relative performance of CPU against storage (DRAM), 1980==1. Adapted from Herr&Ssy.

5.1.1 Overcoming performance bottlenecks

There continues to be a market for processors that execute programs more quickly than those currently avai
able. There is a commercial incentive to build higher-performance processors. Processor design has reache
the stage where simply increasing the processor clock rate does not increase rate of program éxé8ution.

A processor contains a variety of units, any one of which could be the bottleneck that prevents other units
from delivering full performance. Some of these bottlenecks, and their solutions, can have implications
at the source code level (less than perfect branch predi€édtihsind others don't (the possibility of there
being insufficient pins to support the data bandwidth required; pin count has only been increasing at 16%
per yeak7%)).

Data and instructions have to be delivered to the processor, from storage, to keep up with the rate it
handles them. Using faster memory chips to keep up with the faster processors is not usually cost effective
Figure 0.6 shows how processor performance has outstripped that of DRAM (the most common kind of stor-
age used). See Dietz and Matf§f! for measurements of access times to elements of arrays of various sizes,
for 13 different Intel x86 compatible processors whose clock rates ranged from 100 MHz to 1700 MHz.

A detailed analysis by Agarwal, Hrishikesh, Keckler, and Buf§jdound that delays caused by the
time taken for signals to travel through on-chip wires (12—32 cycles to travel the length of a chip using
35nm CMOS technology, clocked at 10GHz), rather than transistor switching speed, was likely to be a
major performance factor in future processors. Various methods have been pRsSotsedet around this
problem, but until such processor designs become available in commercially significant quantities they are

22 v 1.0a June 16, 2005

5 Execution environment Introductiom

not considered further here.

Cache cache

A commonly used solution to the significant performance difference between a processor and its storage
is to place a small amount of faster storageaahe between them. Caching works because of locality of
reference. Having accessed storage location X, a program is very likely to access a location close to X in
the very near future. Research has shéfththat even with a relatively small cache (i.e., a few thousand
bytes) it is possible to obtain significant reductions in accesses to main storage.

Modern, performance-based processors have two or more caches. A level 1 cache (caflechitie,
which can respond within a few clock cycles (two on the Pentium 4, four on the UltraSPARC llI), but is
relatively small (8 K on the Pentium 4, 64 K on the UltraSPARC lIl), and a level 2 cache (calld®2the
cachg which is larger but not as quick (256 K/7 clocks on the Pentium 4). Only a few processors have
further levels of cache. Main storage is significantly larger, but its contents are likely to be more than 250
clock cycles away.

Developer optimization of memory access performance is simplest when targeting processors that contain
a cache, because the hardware handles most of the details. However, there are still cases where developers
may need to manually tune memory access performance (e.g., application domains where large, sophisti-
cated hardware caches are too expensive, or where customers are willing to pay for their applications to
execute as fast as possible on their existing equipment). Cache behavior when a processor is executing
more than one program at the same time can be quiet cordpie®e

The locality of reference used by a cache applies to both instructions and data. To maximize locality of
reference, translators need to organize instructions in the order that an executing program is most likely to
need them and allocate object storage so that accesses to them always fill the cache with values that will
be needed next. Knowing which machine code sequences are most frequently executed requires execution
profiling information on a program. Obtaining this information requires effort by the developer. It is neces-
sary to instrument and execute a program on a representative set of data. This data, along with the original
source is used by some translators to create a program image having a better locality of reference. It is also
possible to be translator-independent by profiling and reorganizing the basic blocks contained in executable
programs. Tomiyama and Yasullf8¥ used linear programming to optimize the layout of basic blocks in
storage and significantly increased the instruction cache hit rate. Running as a separate pass after transla-
tion also reduces the need for interactive response times; the analysis took more than 10 hours on a 85 MHz
microSPARC-II.

Is the use of a cache by the host processor something that developers need to take into account? Although
every effort has been made by processor vendors to maximize cache performance and translator vendors are
starting to provide the option to automatically tune the generated code based on profiling infokPAdtion,
sometimes manual changes to the source (by developers) can make a significant difference. It is important
to remember that any changes made to the source may only make any significant changes for one particular
processor implementation. Other implementations within a processor family may share the same instruction
set but they could have different cache behaviors. Cache-related performance issues are even starting to
make it into the undergraduate teaching curricul(ifi.

A comparison by Bahar, Calder, and GrunwW&ldshowed that code placement by a translator could im-
prove performance more than a hardware-only solution; the two combined can do even better. In some cases
the optimizations performed by a translator can affect cache behavior, for instance loop unrolling. Translarroling
tors that perform such optimizations are starting to become commercially avéif&biEhe importance of
techniques for tuning specific kinds of applications are starting to be recognized (transaction processing as
in Figure 0.8} numerical computatiof$®7).

Specific cases of how optimizers attempt to maximize the benefits provided by a processors’ cache are
discussed in the relevant C sentences. In practice these tend to be reorganizations of the sequence of in-
structions executed, not reorganizations of the data structures useé®3npedvides an example of how
reorganization of a data structure can improve performance on the Pentium 4:

June 16, 2005 v 1.0a 23

_ Introduction 5 Execution environment

storage
dividing up

processor
pipeline

signal in- 189
terrupt

abstract ma-
chine processing

1 struct {

2 float x, v, z, r, g, b;

3 } a_screen_3D[1000];

4 struct {

5 float x[1000], y[1000], z[1000];
6 float r[1000], g[1000], b[1000];
7 } b_screen_3D;

8 struct {

9 float x[4], v[4], z[4];

10 float r[4], gl[4], b[4];

1 } c_screen_3D[250];

The structure declaration used farscreen_3D might seem the obvious choice. However, it is likely that
operations will involve either the tuple v, andz, or the tupler, g, andb. A cache line on the Pentium
4 is 64 bytes wide, so a fetch of one of thelements will cause the correspondings, andb elements
to be loaded. This is a waste of resource usage if they are not accessed. It is likely that all elements of the
array will be accessed in sequence and the structure declaration useddoeen_3D makes use of this
algorithmic information. An access to an elementxokill cause subsequent elements to be loaded into
the cache line, ready for the next iteration. The structure declaration, suggested by Irte$cioren_3D
makes use of a Pentium 4 specific characteristic; reading/writing 16 bytes from/to 16-byte aligned storage
is the most efficient way to use the storage pipeline. Intel points to a possible 10% to 20% performance
improvement through modifications that optimize cache usage; a sufficiently large improvement to warrant
using the nonobvious, possibly more complex, data structures in some competitive markets.

Dividing up storage

Many host operating systems provide the ability for programs to make use of more storage than the hos
has physical memory (so-call@dtual memory. This virtual memory is divided up into units callpdges
which can beswappedout of memory to disk when it is not need&tf! There is a severe performance
penalty on accesses to data that has been swapped out to disk (i.e., some other page needs to be swapj
out and the page holding the required data items swapped back into memory from disk). Developers car
organize data accesses to try to minimize this penalty. Having translators do this automatically, or even
having them insert code into the program image to perform the swapping at points that are known to be not
time-critical is a simpler solutiof§3¢!

Speeding up instruction execution

A variety of techniques are used to increase the number of instructions executed per second. Most prc
cessors are capable of executing more than one instruction at the same time. The most common techniqu
and one that can affect program behavior, is instrugpipelining Pipelining breaks instruction execution
down into a series of stages (see Figure 0.7). Having a different instruction processed by each stage at th
same time does not change the execution time of a single instruction. But it does increase the overall rate
of instruction execution because an instruction can complete at the end of every processor cycle. Many
processors break down the stages shown in Figure 0.7 even further. For instance, the Intel Pentium 4 has
20-stage pipeline.

The presence of a pipeline can affect program execution, depending on processor behavior when al
exception is raised during instruction execution. A discussion on this issue is given elsewhere.

Other techniques for increasing the number of instructions executed per second indude(Very
Long Instruction Word) in which multiple operations are encoded in one long instruction, and parallel
execution in which a processor contains more than one instruction pipéfitléeThese techniques have no
more direct impact on program behavior than instruction pipelining. In practice it has proven difficult for
translator to find long instruction sequences that can be executed in some concurrent fashion. Some hel
from the developer is still needed for these processors to approach peak performance.

5.2 Runtime library
An implementations’ runtime library handles those parts of a program that are not directly translated to
machine code. Calls to the functions contained in this library may occur in the source or be generated by a

24 v 1.0a June 16, 2005

6 Measuring implementations Introducti(m

Stage 1 Fetch 1 Fetch 2 Fetch 3 Fetch 4 Fetch 5 Fetch 6
Stage 2 Decode 1 Decode 2 Decode 3 Decode 4 Decode 5
Stage 3 Execute 1 Execute 2 Execute 3 Execute 4
Memory Memory Memory
Stage 4
access 1 access 2 access 3
Write Write
Stage 5
back 1 back 2
\J
time 1 time 2 time 3 time 4 time 5 time 6

Figure 0.7: Simplified diagram of some typical stages in a processor instruction pipeline: Instruction fetch, decode, execute,
memory access, and write back.

translator (i.e., to some internal routine to handle arithmetic operations on values @bhgdong). The
runtime library may be able to perform the operation completely (e.g., the trigopnometric functions) or may
need to call other functions provided by the host environment (e.g., O/S function, not C implementation
functions).

These issues are covered briefly in the discussion of the library functions. library

6 Measuring implementations

Although any number of different properties of an implementation might be measured, the most commasalyiring im-
measured is execution time performance of the generated program image. In an attempt to limit the, apRgREF1o"S
of factors influencing the results, various organizations have created sets of test progt@nshmarks- ™ma%¢
that are generally accepted within their domain. Some of these test programs are discussed below (SPEC,
the Transaction Processing council, Embedded systems, Linpack, and DSPSTONE). In some application
areas the size of the program image can be important, but there are no generally accepted benchmarks for
comparing size of program image. The growth in sales of mobile phones and other hand-held devices has sig-
nificantly increased the importance of minimizing the electrical energy consumed by a program (the energy
consumption needs of different programs performing the same function are starting to be c&f¥¥hared

A good benchmark will both mimic the characteristics of the applications it is intended to be representa-
tive of, and be large enough so that vendors cannot tune their products to perform well on it without also
performing well on the real applications. The extent to which the existing benchmarks reflect realistic ap-
plication usage is open to debate. Not only can different benchmarks give different results, but the same
benchmark can exhibit different behavior with different infétl Whatever their shortcomings may be the
existing benchmarks are considered to be the best available (they are used in almost all published research).

It has long been an accepted truism that programs spend most of their time within loops and in particular
a small number of such loops. Traditionally most processor-intensive applications, that were commlg’?'éier yent
important, have been scientific or engineering based. A third kind of application domain has now become
commercially more important (in terms of hardware vendors making sales)— data-oriented applications
such as transaction processing and data mining.

Some data-oriented applications share a characteristic with scientific and engineering applications in that
a large proportion of their time is spent executing a small percentage of the code. However, it has been
found that for Online Transaction Processing (OLTP), specifically the TPC-B benchmarks, the situatimsis

June 16, 2005 v 1.0a 25

_ Introduction 6 Measuring implementations

SPEC
benchmarks

10% Sequential Range Selection 10% Indexed Range Selection Join

100% 100% 100%

I I o I I
I o Y ° I
80% — " | — s . ° — | e B .
. . . : . hd hd °
o o H R e
E : ° Y M °
- o . . .
£ 60%— H —] —]
=
o o]
2] o]
5 g N
= 40% — o]]] o o] o]
o) o) o] o] o] o) o]
= o] o] o) o) o] o] o] o]
o o] o] o] o] o] o] o] Q
o] o] o] o] o] o] o] o]
o] o] o) o) o] o] o) o]
20% — o o] o] o] — — 0 o] o] o]
o] o] o] o] o] o] o] o] Q
o] o] o] o] o] = o] o] o] o]
o] o] o) o) o] = o] o] o] o) o]
o] o] o] o] o] o) o] o] o] o] o]
o] o] o] o] o] o] o] o] o] o] Q
O‘ (‘j (‘j (‘j (‘j (‘j (‘j (‘j O‘ (‘j O‘
A B C D B C D A B C D
o Computation T Memory stalls ¢ Branch mispredictions mm Resource stalls

Figure 0.8: Execution time breakdown, by four processor components (bottom of graphs) for three different application queries
(top of graphs). Adapted from Ailamaki!!

more complicatedt?®4 Recent measurements of four commercial databases running on an Intel Pentium
processor showed that the processor spends 60% of its time Btallsee Figure 0.8).

A distinction needs to be made between characteristics that are perceived, by developers, to make
difference and those that actually do make a difference to the behavior of a program. Discussion within these
Common Implementation sections is concerned with constructs that have been shown, by measurement, t
make a difference to the execution time behavior of a program. Characteristics that relate to perceived
differences fall within the realm of discussions that occur in the Coding guideline sections.

The measurements given in the Common Implementation sections tend to be derived from the charactel
istics of a program while it is being executed— dynamic measurements. The measurements given in the
Usage sections tend to be based on what appears in the source code— static measurements.

6.1 SPEC benchmarks

Processor performance based on the SPEC (Standard Performance Evaluation Corpesatipac . org)
benchmarks are frequently quoted by processor and implementation vendors. Academic research on opt
mizers often base their performance evaluations on the programs in the SPEC suite. SPEC benchmark
cover a wide range of performance evaluations: graphics, NFS, mailservers, aritPEPle CPU bench-

marks are the ones frequently used for processor and translator measurements.

The SPEC CPU benchmarks are broken down into two groups, the integer and the floating-point pro-
grams; these benchmarks have been revised over the years, the major releases being in 1989, 1992, 19
and 2000. A particular set of programs is usually denoted by combining the names of these components
For instance, SPECIint95 is the 1995 integer SPEC benchmark and SPECfp2000 is the 2000 floating-poin
benchmark.

The SPEC CPU benchmarks are based on publicly available source code (written in C for the integer
benchmarks and, predominantly, Fortran and C for the floating-point). The names of the programs are
known and versions of the source code are available on the Internet. The actual source code used by SPE
may differ slightly because of the need to be able to build and execute identical programs on a wide range
of platforms (any changes needed to a program’s source to enable it to be built are agreed to by the SPE(
membership).

26 v 1.0a June 16, 2005

7 Introduction Introduction m

A study by Saavedra and SnitH!! investigated correlations between constructs appearing in the source
code and execution time performance of benchmarks that included SPEC.

6.2 Other benchmarks
The SPEC CPU benchmarks had their origins in the Unix market. As such they were and continue tadenmarks

aimed at desktop and workstation platforms. Other benchmarks that are often encountered, and the rationale
used in their design, include the following:

+ DSPSTONIE333 js a DSP-oriented set of benchmarks,

» The characteristics of programs written for embedded applications are very difféfefthe EDN
Embedded Microprocessor Benchmarking Consortium (EEMBC, pronounced Embassy. eembc .
org), was formed in 1997 to develop standard performance benchmarks for the embedded market
(e.g., telecommunications, automotive, networking, consumer, and office equipment). They currently
have over 40 members and their benchmark results are starting to become known.

+ MediaBencH® is a set of benchmarks targeted at a particular kind of embedded application— mul-
timedia and communications. It includes programs that process data in various formats, including
JPEG, MPEG, GSM, and postscript.

» The Olden benchmak®? attempts to measure the performance of architectures based on a distrilasi@ehchmark
memory.

» The Stanford ParalleL Applications for SHared memory (SPLASH, now in its second release as
SPLASH-2'412)) 'is a suite of parallel applications intended to facilitate the study of centralized and
distributed shared-address-space multiprocessors.

» The TPC-B benchmark from the Transaction Processing Performance Council (TPC).

TPC-B models a banking database system that keeps track of customers’ account balances, as well as%%%q%gwgq
per branch and teller. Each transaction updates a randomly chosen account balance, which includes updating

the balance of the branch the customer belongs to and the teller from which the transaction is submitted. It

also adds an entry to the history table which keeps a record of all submitted transactions.

6.3 Processor measurements
Processor vendors also measure the characteristics of executing programs. Their reason is to gain insights
that will enable them to build better products, either faster versions of existing processors or new processors.
What are these measurements based on? The instructions executed by a processor are generated by transla-
tors, which may or may not be doing their best with the source they are presented with. Translator vendors
may, or may not, have tuned their output to target processors with known characteristics. Fortunately this
book does not need to concern itself further with this problem.

Processor measurements have been used to compare different prdé&smesjict how many instruc-
tions a processor might be able to issue at the same¥#ftkand tune arithmetic operatiof8% Processor
vendors are not limited to using benchmarks or having access to source code to obtain useful information;
Led’®] measured the instruction characteristics of several well-known Windows NT applications.

Coding Guidelines

7 Introduction

The intent of these coding guidelines is to help management minimize the cost of ownership of thecsauy gadelines
code they are responsible for. The guidelines take the form of prepackaged recommendations of wHiEsf-cton
source constructs to use, or not use, when more than one option is available. These coding guidelines sit at
the bottom layer of what is potentially a complex, integrated software development environment.

June 16, 2005 v 1.0a 27

_ Introduction 8 Source code cost drivers

Adhering to a coding guideline is an immediate cost. The discussion in these coding guidelines’ sections
is intended to help ensure that this cost payment is a wise investment yielding savings later.

The discussion in this section provides the background material for what appears in other coding guide-
line sections. It is also the longest section of the book and considers the following:

¢ The financial aspects of software development and getting the most out of any investment in adhering
to coding guidelines.

Selecting, adhering to, and deviating from guidelines.

Applications and their influence on the source that needs to be written.

« Developers’; bounding the limits, biases, and idiosyncrasies of their performance.

There are other Coding guideline subsections containing lengthy discussions. Whenever possible sucl
discussions have been integrated into the C sentence-based structure of this book (i.e., they occur in th
relevant C sentences).

The term used in this book to describe people whose jobs involve writing source ceoféware de-
veloper The termprogrammertends to be associated with somebody whose only job function is to write
software. A typist might spend almost 100% of the day typing. People do not spend all their time di-
rectly working on source code (in most studies, the time measured on this activity rarely rises above 25%),
therefore the term programmer is not appropriate. The term software developer, usually shortiEvedt to
oper, was chosen because it is relatively neutral, but is suggestive of somebody whose primary job function
involves working with source code.

Developers often object to following coding guidelines, which are often viewed as restricting creative
freedom, or forcing them to write code in some unnatural way. Creative freedom is not something that
should be required at the source code implementation level. While particular ways of doing things may
appeal to individual developers, such usage can be counter-productive. The cost to the original develope
may be small, but the cost to subsequent developers (through requiring more effort by them to work with
code written that way) may not be so small.

8 Source code cost drivers

coding guidelines Having source code occupy disk space rarely costs very much. The cost of ownership for source code is

cost drivers

incurred when it is used. Possible uses of source code include:

« modifications to accommodate customer requests which can include fixing faults;
* major updates to create new versions of a product; and

* ports to new platforms, which can include new versions of platforms already supported.

These coding guideline subsections are applicable during initial implementation and subsequent modifica
tions at the source code level. They do not get involved in software design issues, to the extent that these ar
programming language-independent. The following are the underlying factors behind these cost drivers:

» Developer characteristics (human factordpevelopers fail to deduce the behavior of source code
constructs, either through ignorance of C or because of the limits in human information processing
(e.g., poor memory of previously read code, perception problems leading to identifiers being misread,
or information overload in short-term memory) causing faults to be introduced. These issues are dealt
with here in the Coding guideline subsections.

¢ Translator characteristicsA change of translator can result in a change of behavior. Changes can
include using a later version of the translator originally used, or a translator from a different vendor.
Standards are rarely set in stone and the C Standard is certainly not. Variations in implementation

28 v 1.0a June 16, 2005

8 Source code cost drivers Introductitm

behavior permitted by the standard means that the same source code can produce different results.
Even the same translator can have its’ behavior altered by setting different options, or by a newer re-
lease. Differences in translator behavior are discussed in Commentary and Common Implementations
subsections. Portability to*€ and C90 translators is dealt with in their respective sections.

» Host characteristicsJust like translator behavior this can vary between releases (updates to system
libraries) and host vendors. The differences usually impact the behavior of library calls, not the
language. These issues are dealt with in Common Implementation sections.

Application characteristicsPrograms vary in the extent to which they need to concern themselves
with the host on which they execute— for instance, accessing memory ports. They can also place
different demands on language constructs— for instance, floating-point or dynamic memory alloca-
tion. These issues are dealt with under Usage, indirectly under Common Implementations atjti¥ere
in Coding Guideline sections.

» Product testing.The complexity of source code can influence the number of test cases that need to
be written and executed. This complexity can be affected by design, algorithmic and source gode
construct selection issues. The latter can be the subject of coding guidelines. gwdellnes

testability

Covering all possible source code issues is impossible. Frequency of occurrence is used to provide a cutoff
filter. The main purpose of the information in the Usage sections is to help provide evidence for igBat
filtering to apply.
8.1 Guideline cost/benefit
When a guideline is first encountered it is educational. It teaches developers about a specific sobienmelines
that others have encountered and that they are likely to encounter. This is a one-time learning cost (tRgt""®
developers are likely to have to pay at some time in their careers). People do forget, so there may be a
relearning cost. (These oversights are the sort of thing picked up by an automated guideline enforcement
tool, jogging the developers memory in the process.)

Adhering to guidelines requires an investment in the form of developer’s time. Like all investments it
needs to be made on the basis that a later benefit will provide an adequate return. It is important to bear
in mind that failure to recoup the original investment is not the worst that can happen. The value of lost
opportunity through being late to market with a product can equal the entire development budget. It is
management’s responsibility to select those coding guidelines that have a return on investment applgable
to a particular project.

A set of guidelines can be viewed as a list of recommended coding practices, the economic cost/benefit
of which has been precalculated and found to be acceptable. This precalculation, ideally, removes the need
for developers to invest in performing their own calculations. (Even in many situations where they are not
worthwhile, the cost of performing the analysis is greater than the cost of following the guideline.)

Researchel® 1264 are only just starting to attempt to formally investigate the trade-off involved between
the cost of creating maintainable software and the cost of maintaining software.

A study by Visaggi#3%? performed a retrospective analysis of a reengineering process that had been
applied to a legacy system containing 1.5 M lines. The following is his stated aim:

1. Guidelines are provided for calculating the quality and economic scores for each component; These ca¥spegid*

reused in other projects, although they can and must also be continually refined with use;

2. A model for determining the thresholds on each axis is defined; the model depends on the quality and
economics policy adopted by the organization intending to renew the legacy system;

3. A decision process is included, that helps to establish which renewal process should be carried out for each
component; this process may differ for components belonging to the same quadrant and depends on the targets
the organization intends to attain with the renewal process.

June 16, 2005 v 1.0a 29

_ Introduction 8 Source code cost drivers

8.1.1 What is the cost?

coding guidelines Guidelines may be more or less costly to follow (in terms of modifying, or not using, constructs once
the cost their lack of conformance to a guideline is known). Estimating any cost change caused by having to use
constructs not prohibited by a guideline will vary from case to case. It is recognized that the costs of
following a guideline recommendation can be very high in some cases. One solution is the deviations
wdeviationso mechanism, which is discussed elsewhere.
Guidelines may be more or less easy to flag reliably from a static analysis tool point of view. The quality
of static analysis tools is something that developers need to evaluate when making a purchase decisiol
These coding guidelines recognize the difficulties in automating some checks by indicating that some should
code reviewso be performed as part of code reviews.
All guidelines are given equal weight in terms of the likelihood of not adhering to them causing a fault.
Without data correlating a guideline not being followed to the probability of the containing code causing a
fault, no other meaningful options are available.

8.1.2 What is the benefit?

coding guidelines What is the nature of the benefit obtained from an investment in adhering to coding guidelines? These coding
the benefit guidelines assume that the intended final benefit is always financial. However, the investment proposal may
not list financial benefits as the immediate reason for making it. Possible other reasons include:

« mandated by some body (e.g., regulatory authority, customer Q/A department);

* legal reasons— companies want to show that they have used industry best practices, whatever the
are, in the event of legal action being taken against them;

» a mechanism for controlling source code: The purpose of this control may be to reduce the depen-
dency on a particular vendor’s implementation (portability issues), or it may be an attempt to over-
come inadequacies in developer training.

Preventing a fault from occurring is a benefit. How big is this benefit (i.e., what would the cost of the
fault have been? How is the cost of a fault measured?) Is it in terms of the cost of the impact on the
end user of experiencing the fault in the program, or is it the cost to the vendor of having to deal with it
being uncovered by their customers (which may include fixing it)? Measuring the cost to the end user is
very difficult to do, and it may involve questions that vendors would rather have left unasked. To simplify
matters these guidelines are written from the point of view of the vendor of the product containing software.
The cost we consider is the cost to fix the fault multiplied by the probability of the fault needing to be fixed
(fault is found and customer requirements demand a fix).

8.1.3 Safer software?
coding guidelines Coding guidelines, such as those given in this book, are often promoted as part of the package of measure
safersoftware 4 he ysed during the development of safety-critical software.

The fact that adherence to guideline recommendations may reduce the number of faults introduced intc
the source by developers is primarily an economic issue. The only difference between safety critical soft-
ware and other kinds of software is the level of confidence required that a program will behave as intended
Achieving a higher level of confidence often involves a higher level of cost. While adherence to guideline
recommendations may reduce costs and enable more confidence level boosting tasks to be performed, f
the same total cost, management may instead choose to reduce costs and not perform any additional task

Claiming that adhering to coding guidelines makes programs safer suggests that the acceptance criteri
being used are not sufficient to achieve the desired level of confidence on their own (i.e., reliance is being
placed on adherence to guideline recommendations reducing the probability of faults occurring in sections
of code that have not been fully tested).

An often-heard argument is that some language constructs are the root cause of many faults in program
and that banning the use of these constructs leads to fewer faults. While banning the use of these construc

30 v 1.0a June 16, 2005

8 Source code cost drivers Introductitm

may prevent them from being the root cause of faults, there is rarely any proof that the alternative constructs
used will not introduce as many faults, if not more, than the constructs they replace.

This book does not treatafety-criticalas being a benefit of adherence to guideline recommendations in
its own right.

8.2 Code developments place in the universe

Coding guidelines need to take account of the environment in which they will be applied. There are a varieiyopment
of reasons for creating programs. Making a profit is a common rationale and the only one considered by® ™
these coding guidelines. Writing programs for enjoyment, by individuals, involves reasons of a personal
nature, which are not considered in this book.

A program is created by developers who will have a multitude of reasons for doing what they do. Training
and motivating these developers to align there interests with that of the organization that employs thgm is
outside the scope of this book, although staffing issues are discussed. gwdellnes

Programs do not exist in isolation. While all applications will want fault-free software, the importéﬁf{'?:ge
assigned to faults can depend on the relative importance of the software component of the total package.
This relative importance will also influence the percentage of resources assigned to software development
and the ability of the software manager to influence project time scales.

The kind of customers an organization sells to, can influence the software development process. There
are situations where effectively there is a single customer. For instance, a large organization paying for the
development of a bespoke application will invariably go through a formal requirements analysis, specifica-
tion, design, code, test, and handover procedure. Much of the research on software development practices
has been funded by and for such development projects. Another example is software that is invisible to the
end user, but is part of a larger product. Companies and projects differ as to whether software controls the
hardware or vice versa (the hardware group then being the customer).

MostOpen Sourceoftware development has a single customer, the author of the softffai®! In this
case the procedures followed are likely to be completely different from those followed by paying customers.
In a few cases Open Source projects involving many developers have flourished. Severaf$iuties
investigated some of the group dynamics of such cooperative development (where the customer seems to
be the members of a core team of developers working on the project). While the impact of this form of
production on traditional economic structures is widely thought to be signifitahthese guidelines still
treat it as a form of production, which has different cost/benefit cost drivers; whether the motivating factors
for individual developers are really any different is not discussed here.

When there are many customers, costs are recouped over many customers, who usually pay less than
the development cost of the software. In a few cases premium prices can be charged by market leaders, or
by offering substantial customer support. The process used for development is not normally visible to the
customer. Development tends to be led by marketing and is rarely structured in any meaningful formal way;
in fact too formal a process could actively get in the way of releasing new products in a timely fashion.

Research by Carm&?® of 12 firms (five selling into the mass market, seven making narrow/direct sales)
involved in packaged software development showed that the average firm has been in business for three
years, employed 20 people, and had revenues of $1 million (1995 figures).

As pointed out by Carmel and others, time to market in a competitive environment can be crucial. Being
first to market is often a significant advantage. A vendor that is first, even with a very poorly architected,
internally, application often gets to prosper. Although there may be costs to pay later, at least the company
is still in business. A later market entrant may have a wonderful architected product, that has scope for
future expansion and minimizes future maintenance costs, but without customers it has no future.

A fundamental problem facing software process improvement is how best to allocate limited resources,
to obtain optimal results. Large-scale systems undergo continuous enhancement and subcontractors may
be called in for periods of time. There are often relatively short release intervals and a fixed amount of
resources. These characteristics prohibit revolutionary changes to a system. Improvements have to be made
in an evolutionary fashion.

June 16, 2005 v 1.0a 31

_ Introduction 8 Source code cost drivers

coding guidelines
staffing

Coding guidelines need to be adaptable to these different development environments. Recognizing tha
guideline recommendations will be adapted, it is important that information on the interrelationship between
them is made available to the manager. These interrelationships need to be taken into account when tailorin
a set of guideline recommendations.

8.3 Staffing

The culture of information technology appears to be one of high staff turfi&Vduwith reported annual
turnover rates of 25% to 35% in Fortune 500 companies).

If developers cannot be retained on a project new ones need to be recruited. There are generally mor:
vacancies than there are qualified developers to fill them. Hiring staff who are less qualified, either in
application-domain knowledge or programming skill, often occurs (either through a conscious decision
process or because the developer’s actual qualifications were not appreciated). The likely competence ¢
future development staff may need to be factored into the acceptable complexity of source code.

A regular turnover of staff creates the need for software that does not require a large investment in upfront
training costs. While developers do need to be familiar with the source they are to work on, companies want
to minimize familiarization costs for new staff while maximizing their productivity. Source code level
guideline recommendations can help reduce familiarization costs in several ways:

» Not using constructs whose behavior varies across translator implementations means that recruitmen
does not have to target developers with specific implementation experience, or to factor in the cost of
retraining— it will occur, usually through on-the-job learning.

« Minimizing source complexity helps reduce the cognitive effort required from developers trying to
comprehend it.

« Increased source code memorability can reduce the number of times developers need to reread th
same source.

* Visible source code that follows a consistent set of idioms can take advantage of people’s natural
ability to categorize and make deductions based on these categorizes.

Implementing a new project is seen, by developers, as being much more interesting and rewarding that mair
taining existing software. It is common for the members of the original software to move on to other projects
once the one they are working is initially completed. Studies by Couger and &8ltiewestigated various
approaches to motivating developers working on maintenance activities. They identified the following two
factors:

1. The motivating potential of the jolbased on skill variety required, the degree to which the job
requires completion as a whole (task identity), the impact of the job on others (task significance),
degree of freedom in scheduling and performing the job, and feedback from the job (used to calculate
aMotivating Potential ScoreMPS).

2. What they called an individual's growth need strength (GNi&$ed on a person’s need for personal
accomplishment, to be stimulated and challenged.

The research provided support for the claim that MPS and GNS could be measured and that jobs could be
tailored, to some degree, to people. Management'’s role was to organize the work that needed to be done s
as to balance the MPS of jobs against the GNS of the staff available.

It is your authors experience that very few companies use any formally verified method for measuring
developer characteristics, or fitting their skills to the work that needs to be done. Project staffing is often
based on nothing more than staff availability and a date by which the tasks must be completed.

32 v 1.0a June 16, 2005

8 Source code cost drivers Introductitm

8.3.1 Training new staff
Developers new to a project often need to spend a significant amount of time (often months) building up theigveloper
knowledge base of a program’s source cB#®! One solution is a training program, complete with well- ~ ""n9
documented introductions, road maps of programs, and how they map to the application domain, all taught
by well-trained teachers. While this investment is cost effective if large numbers of people are involved,
most source code is worked on by a relatively small number of people. Also most applications evolve over
time. Keeping the material up-to-date could be difficult and costly, if not completely impractical. In short,
the cost exceeds the benefit.

In practice new staff have to learn directly from the source code. This may be supplemented by documen-
tation, provided it is reasonably up-to-date. Other experienced developers who have worked on the source
may also be available for consultation.

8.4 Return on investment

The risk of investing in the production of software is undertaken in the expectation of receiving a return rol
that is larger than the investment. Economists have produced various models that provide an answer for the
guestion: “What return should | expect from investing so much money at such and such risk over a period

of time?”

Obtaining reliable estimates of the risk factors, the size of the financial investment, and the time required
is known to be very difficult. Thankfully, they are outside the scope of this book. However, given the
prevailing situation within most development groups, where nobody has had any systematic cost/benefit
analysis training, an appreciation of the factors involved can provide some useful background.

Minimizing the total cost of a software product (e.g., balancing the initial development costs against
subsequent maintenance costs) requires that its useful life be known. The risk factors introduced by third
parties (e.g., competitive products may remove the need for continued development, customers may not
purchase the product) mean that there is the possibility that any investment made during development will
never be realized during maintenance because further work on the product never occurs.

The physical process of writing source code is considered to be so sufficiently unimportant that doubling
the effort involved is likely to have a minor impact on development costs. This is the opposite case to
how most developers view the writing process. It is not uncommon for developers to go to great lengths
to reduce the effort needed during the writing process, paying little attention to subsequent effects of their
actions; reports have even been published on the subjéét.

8.4.1 Some economics background
Before going on to discuss some of the economic aspects of coding guidelines, we need to cover some of npv
the basic ideas used in economics calculations. The primary quantity that is used in this book is Net Present
Value (NPV).

8.4.1.1 Discounting for time
A dollar today is worth more than a dollar tomorrow. This is because today’s dollar can be invested and
start earning interest immediately. By tomorrow it will have increased in value. The present F&ye{

a future payoff(C, can be calculated from:

PV = discount factorxC (0.3)

where thediscountfactor is less than one. It is usually represented by:

(0.4)

discount factor =

1+7r

wherer is known as the rate of return; representing the amount of reward demanded by investors for accept-
ing a delayed payment. The rate of return is often calledlibeount rateor theopportunity cosof capital.
It is often quoted over a period of a year, and the calculatioPfgrovern years becomes:

June 16, 2005 v 1.0a 33

_ Introduction 8 Source code cost drivers

c

By expressing all future payoffs in terms of present value, it is possible to compare them on an equal footing.

Example (from Raff8%8l). A manager has the choice of spending $250,000 on the purchase of a test
tool, or the same amount of money on hiring testers. It is expected that the tool will make an immediate
cost saving of $500,000 (by automating various test procedures). Hiring the testers will result in a saving of
$750,000 in two years time. Which is the better investment (assuming a 10% discount rate)?

$500, 000
PV 001 = 0100 = $500, 000 (0.6)
$750,000
PV testers = (Ij;1i1655A4—$619,835 0.7)

Based on these calculations, hiring the testers is the better option (has the greatest present value).

8.4.1.2 Taking risk into account
The previous example did not take risk into account. What if the tool did not perform as expected, what if
some of the testers were not as productive as hoped? A more realistic calculation of present value needs t
take the risk of future payoffs not occurring as expected into account.

A risky future payoff is not worth as much as a certain future payoff. The risk is factored into the discount
rate to create aeffective discount ratek = r+6 (wherer is the risk-free rate anfla premium that depends
on the amount of risk). The formulae for present value becomes:

C
PV =—+ .
v 14" 08)
Recognizing that both andé can vary over time we get:
L return;
PV = & 0.9
; 14k 09

wherereturn; is the return during periotl
Example. Repeating the preceding example, but assuming a 15% risk premium for the testers option.

$500, 000

Pvtool =

$750, 000

= $480, 000 0.11
(1+0.10+0.15)2 8480, (0.11)

p Vteste’rs =

Taking this risk into account shows that buying the test tool is the better option.

34 v 1.0a June 16, 2005

8 Source code cost drivers Introductitm

8.4.1.3 Net Present Value

Future payoffs do not just occur, an investment needs to be made. A quantity calettReesent Value
(NPV) is generally considered to lead to the better investment decidiShk.is calculated as:

NPV = PV — investment cost (0.12)

Example (from Raff§%8)). A coding reading initiative is expected to cost $50,000 to implement. The
expected payoff, in two years time, is $100,000. Assuming a discount rate of 10%, we get:

$100, 000

NPV =
1x102

— $50,000 = $32, 645 (0.13)

Several alternatives to NPV, their advantages and disadvantages, are described in Chapter five B¥8realey
and by Raffd1°88 One commonly seen rule within rapidly changing environments is the payback rule. This
requires that the investment costs of a project be recovered within a specified period. The payback period
is the amount of time needed to recover investment costs. A shorter payback period being preferred to a
longer one.

8.4.1.4 Estimating discount rate and risk
The formulae for calculating value are of no use unless reliable figures for the discount rate and the impact
of risk are available. The discount rate represents the risk-free element and the closest thing to a risk-free
investment is government bonds and securities. Information on these rates are freely available. Governments
face something of a circularity problem in how they calculate the discount rate for their own investments.
The US government discusses these issues i@uidelines and Discount Rates for Benefit-Cost Analysis
of Federal Programi$3°%l and specifies a rate of 7%.

Analyzing risk is a much harder problem. Information on previous projects carried out within the com-
pany can offer some guidance on the likelihood of developers meeting productivity targets. In a broader
context the market conditions also need to be taken into account, for instance: how likely is it that other
companies will bring out competing products? Will demand for the application still be there once develop-
ment is complete?

One way of handling these software development risks is for companies to treat these activities in the
same way that options are used to control the risk in a portfolio of stocks. Some very sophisticated models
and formula for balancing the risks involved in holding a range of assets (e.g., stocks) have been developed.
The match is not perfect in that these methods rely on a liquid market, something that is difficult to achieve
using people (moving them to a new project requires time for them to become productive). A number of
researchef®?1257.1410have started to analyze some of the ways these methods might be applied to creating
and using options within the software development process.

8.5 Reusing software

It is rare for a single program to handle all the requirements of a complete application. An application

is often made up of multiple programs and generally there is a high degree of similarity in many of the
requirements for these programs. In other cases there may be variations in a hardware/software product.
Writing code tailored to each program or product combination is expensive. Reusing versions of the same
code in multiple programs sounds attractive.

In practice code reuse is a complex issue. How to identify the components that might be reusable, how
much effort should be invested in writing the original source to make it easy to reuse, how costs and benefits
should be apportioned are a few of the questions.

A survey of the economic issues involved in software reuse is provided by Wil8ls These coding
guidelines indirectly address code reuse in that they recommend against the use of constructs that can vary
between translator implementations.

June 16, 2005 v 1.0a 35

_ Introduction 8 Source code cost drivers

Ada
using

coding o
guidelines
the benefit

coding guidelines
testability

8.6 Using another language

A solution that is sometimes proposed to get around problems in C that are seen as the root cause of mar
faults is to use another language. Commonly proposed languages include Pascal, Ada, and recently Jav
These languages are claimed to have characteristics, such as strong typing, that help catch faults early ar
reduce maintenance costs.

In 1987 the US Department of Defense mandated Ada (DoD Directive 3405.1) as the language in which
bespoke applications, written for it, had to be written. The aim was to make major cost savings over the full
lifetime of a project (implementation and maintenance, throughout its operational life); the higher costs of
using Ada during implementati&fl being recovered through reduced maintenance costs over its working
lifetime 1431 However, a crucial consideration had been overlooked in the original cost analysis. Many
projects are canceled before they become operati&idf2d! If the costs of all projects, canceled or opera-
tional, are taken into account, Ada is not the most cost-effective option. The additional cost incurred during
development of projects that are canceled exceeds the savings made on projects that become operation
The directive mandating the use of Ada was canceled in ¥§%7.

Proposals to use other languages sometimes have more obvious flaws in their arguments. An analysis ¢
why Lisp should be usétf®! is based on how that language overcomes some of the C-inherent problems,
while overlooking its own more substantial weaknesses (rather like proposing that people hop on one leg a:
a solution to wearing out two shoes by walking on two).

The inability to think through a reasoned argument, where choice of programming language is concerned
is not limited to academic papé&¥! (5.3.11 Safe Subsets of Programming languages).

The use of software in applications where there is the possibility of loss of life, or serious injury, is
sometimes covered by regulations. These regulations often tend to be about process— making sure the
various checks are carried out. But sometimes subsets of the C language have been defined (sometime
called by the name safe subsets). The associated coding guideline is that constructs outside this subset n
be used. Proof for claiming that use of these subsets result in safer programs is nonexistent. The benefit c
following coding guidelines is discussed elsewhere.

8.7 Testability

This subsection is to provide some background on testing programs. The purpose of testing is to achieve
a measurable degree of confidence that a program will behave as expected!®gimevides a practical
introduction to testing.

Testing is often written about as if its purpose was to find faults in applications. Many authors quote
figures for the cost of finding a fault, looking for cost-effective ways of finding them. This outlook can
lead to an incorrectly structured development process. For instance, a perfect application will have an
infinite cost per fault found, while a very badly written application will have a very low cost per fault
found. Other figures often quoted involve the cost of finding faults in different phases of the development
process. In particular, the fact that the cost per fault is higher, the later in the process it is discovered. This
observation about relative costs often occurs purely because of how development costs are accounted fc
On a significant development effort equipment and overhead costs tend to be fixed, and there is often ¢
preassigned number of people working on a particular development phase. These costs are not likely tc
vary by much, whether there is a single fault found or 100 faults. However, it is likely that there will be
significantly fewer faults found in later phases because most of them will have been located in earlier phases
Given the fixed costs that cannot be decreased, and the smaller number of faults, it is inevitable that the cos
per fault will be higher in later phases.

Many of the faults that exist in source code are never encountered by users of an application. Examples
of such faults are provided in a study by Chou, Yang, Chelf, Hallem, and Ef§levho investigated the
history of faults in the Linux kernel (found using a variety of static analysis tools). The source of different
releases of the Linux kernel is publicly available (for this analysis 21 snapshots of the source over a sever
year period were used). The results showed how faults remained in successive releases of code that was us
for production work in thousands (if not hundreds of thousands) of computers. The average fault lifetime,

36 v 1.0a June 16, 2005

8 Source code cost drivers Introductitm

before being fixed, or the code containing it ceasing to exist was 1.8 years.
The following three events need to occur for a fault to become an application failure:

1. A program needs to execute the statement containing the fault.
2. The result of that execution needs to infect the subsequent data values, another part of the program.
3. The infected data values must propagate to the output.

The probability of a particular fault affecting the output of an application for a given input can be found by

multiplying together the probability of the preceding three events occurring for that set of input values. The
following example is taken from Voas?®®!

1 #include <math.h>

2 #include <stdio.h>

3

4 void quadratic_root(int a, int b, int c)

5 /%

6 * If one exists print one integral solution of:
7 * axf2 +bx+c=0

8 */

s {

10 int d,

11 X;

12

13 if (a != 0)

14 {

15 d=(*b) - (5*a*c); /* Fault, should multiply by 4. */
16 if (d < 0)

17 x = 0;

18 else

19 X = (sqrt(d) / (2 * a)) - b;

20 }

21 else

22 x = -(c / b);

23

24 if ((@*x*x+b *x+c)==0)

25 printf("%d is an integral solution\n", x);
26 else

N
]

printf("There is no integral solution\n");

3

N
@

Execution of the functiomuadratic_root has four possibilities:

1. The fault is not executed (e.gwadratic_root(0, 3, 6)).
2. The fault is executed but does not infect any of the data (@ugdratic_root(3, 2, 0)).

3. Thefaultis executed and the data is infected, but it does not affect the outpuyfedratic_root (1,
-1, -12)).

4. The fault is executed and the infected data causes the output to be incorreqtiéglgatic_root (10,
0, 10)).

This program illustrates the often-seen situations of a program behaving as expected because the input
values used were not sufficient to turn a fault in the source code into an application failure during program
execution.

Testing by execution examines the source code in a different way than is addressed by these coding
guidelines. One looks at only those parts of the program (in translated form) through which flow of control
passes and applies specific values, the other examines source code in symbolic form.

June 16, 2005 v 1.0a 37

_ Introduction 8 Source code cost drivers

metrics
introduction

cocomMo

A study by AdamB! looked at faults found in applications over time. The results showed (see Table 0.1)
that approximately one third of all detected faults occurred on average every 5,000 years of execution time
Only around 2% of faults occurred every five years of execution time.

Table 0.1: Percentage of reported problems having a given mean time to first problem occurrence (in months, summed over
all installations of a product) for various products (numbered 1 to 9), e.g., 28.8% of the reported faults in product 1 were, on

average, first reported after 19,000 months of program execution time (another 34.2% of problems were first reported after
60,000 months). From Adant.

Product 19 60 190 600 1,900 6,000 19,000 60,000

07 12 21 50 10.3 17.8 28.8 34.2
07 15 32 45 9.7 18.2 28.0 34.3
04 14 28 65 8.7 18.0 28.5 33.7
01 03 20 44 11.9 18.7 28.5 34.2
. . . . 18.4 28.5 34.2
03 08 21 50 11.5 20.1 28.2 32.0
06 14 27 45 9.9 18.5 28.5 34.0
11 14 27 65 111 18.4 27.1 31.9
00 05 19 56 12.8 20.4 27.6 31.2

©CO~NOUAWNR
©
-
=
IS
N
©
IN
IN
©
~

8.8 Software metrics

In a variety of engineering disciplines, it is possible to predict, to within a degree of uncertainty, various
behaviors and properties of components by measuring certain parameters and matching these measureme
against known behaviors of previous components having similar measurements. A number of software met
rics (software measurements does not sound as scientific) are based on the number of lines of source coc
Comments are usually excluded from this count. What constitutes a line is at times fiercely dé€B4dted.

The most commonly used count is based on a simple line count, ignoring issues such as multiple statement
on one line or statements spanning more than one line.

The results from measurements of software are an essential basis for any theoretical 4faliis:-
ever, some of the questions people are trying to answer with measurements of source code have seriol
flaws in their justification. Two commonly asked questions are the effort needed to implement a program
(before it is implemented) and the number of faults in a program (before it is shipped to customers). Fenton
attempted to introduce a degree of rigour into the use of métft4%°]

The COCOMO project (COnstructive COst Model, the latest release is known as COCOMO II) is a
research effort attempting to produce an Open Source, public domain, software cost, effort, and schedule
for developing new software development. Off-the-shelf, untuned models have been up to 600% inaccurate
in their estimates. After Bayesian tuning models that are within 30% of the actual figures 71% of the time
have been builg?®! Effort estimation is not the subject of this book and is not discussed further.

These attempts to find meaningful measures all have a common goal — the desire to predict. However
most existing metrics are based on regression analysis models, they are not causal models. To build thes
models, a number of factors believed to affect the final result are selected, and a regression analysis i
performed to calculate a correlation between them and the final results. Models built in this way will
depend on the data from which they were built and the factors chosen to correlate against. Unlike a causa
model (which predicts results based on “telling the std#§#) there is no underlying theory that explains
how these factors interact. For a detailed critique of existing attempts at program defect prediction based or
measures of source code and fault history, see Féifn.

The one factor that existing fault-prediction models ignore is the human brain/mind. The discussion
in subsequent sections should convince the reader that source code complexity only exists in the mind o
the reader. Without taking into account the properties in the reader’s mind, it is not possible to calculate
a complexity value. For instance, one frequently referenced metric is Halstead's software science metric
which uses the idea of theolumeof a function. Thisvolumeis calculated by counting the operators

38 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

and operands appearing in that function. There is no attempt to differentiate functions containing a few
complex expressions from functions containing many simple expressions; provided the total and unique
operand/operator count is the same, they will be assigned the same complexity.

9 Background to these coding guidelines

These coding guidelines are conventional, if a little longer than most, in the sense that they contain thedugyadelines
exhortation not to use a construct, to do things a particular way, or to watch out for certain problems. P#f&3ound
are unconventional because of the following:

An attempt has been made to consider the impact of a prohibition— do the alternatives have worse
cost/benefit?

Deviations are suggested— experience has shown that requiring a yes/no decision on following a
guideline recommendation can result in that recommendation being ignored completely. Suggesting
deviations can lead to an increase in guideline recommendations being followed by providing a safety
valve for the awkward cases.

« Economics is the only consideration— it is sometimes claimed that following guideline recommenda-
tions imbues software with properties such as being better or safer. Your author does not know of ¢ any
way of measuring betterness in software. The case for increased safety is discussed e|SeWher®1deI|nes

the benefit

An attempt has been made to base those guideline recommendations that relate to human factors on

the experimental results and theories of cognitive psychology. O oioay

It's all very well giving guideline recommendations for developers to follow. But, how do they do their job.
How were they selected? When do they apply? These are the issues discussed in the following sections.

9.1 Culture, knowledge, and behavior

Every language has a culture associated with its use. A culture entails thinking about and doing certaitare of
things in a certain walf”"! How and why these choices originally came about may provide some interesting
historical context and might be discussed in other sections of this book, but they are generally not relevant
to Coding guideline sections.

Cultureis perhaps too grand a word for the common existing practices of C developers. Developers are
overconfident and insular enough already without providing additional blankets to wrap themselves in. The
termexisting practicds both functional and reduces the possibility of aggrandizement.

Existing practices could be thought of as a set of assumptions and expectations about how things are done
(in C). The termC styleis sometimes used to describe these assumptions and expectations. However, this
term has so many different meanings, for different developers, in different contexts, that its use is very prone
to misunderstanding and argument. Therefore every effort will be made to stay away from the conce(pt of
style in this book. gu!dellnes

In many ways existing practice israeme machin&?2 Developers read existing code, learn about the’ ™"
ideas it contains, and potentially use those ideas to write new code. Particular ways of writing code need
not be useful to the program that contains them. They only need to appear to be useful to the developer who
writes the code, or fit in with a developers preferred way of doing things. In some cases developers do not
thoroughly analyze what code to write, they follow the lead of others. Software development has its fads
and fashions, just like any other information-driven ende&ddr.

Before looking at the effect of existing practice on coding guidelines we ought to ask what constitutes
existing practice. As far as the guideline recommendations in this book are concerned, what constitutes
existing practice is documented in the Usage subsections. Developers are unlikely to approach this issue in
such a scientific way. They will have worked in one or more application domains, been exposed to a variety
of source code, and discussed C with a variety of other developers. While some companies might choose to
tune their guidelines to the practices that apply to specific application domains and working enwronmeﬁ{s

June 16, 2005 v 1.0a 39

_ Introduction 9 Background to these coding guidelines

implicit learning

letter patterns
implicit learning

the guideline recommendations in this book attempt to be generally applicable.

Existing practices are not always documented and, in some cases, developers cannot even state what th
are. Experienced developers sometimes use expressions shehGway of doing thingor | feel. When
asked what is meant by these expressions, they are unable to provide a coherent answer. This kind of hume
behavior (knowing something without being able to state what it is) has been duplicated in the laboratory.

« A study by Lewicki, Hill and Bizdf® demonstrated the effect of implicit learning on subjects expec-
tations, even when performing a task that contained no overt learning component. In this study, while
subjects watched a computer screen a letter was presented in one of four possible locations. Subject
had to press the button corresponding to the location of the letter as quickly as possible. The sequence
of locations used followed a consistent, but complex, pattern. The results showed subjects’ response
times continually improving as they gained experience. The presentation was divided into 17 seg-
ments of 240 trials (a total of 4,080 letters), each segment was separated by a 10-second break. Th
pattern used to select the sequence of locations was changed after the 15th segment (subjects we
not told about the existence of any patterns of behavior). When the pattern changed, the response
times immediately got worse. After completing the presentation subjects were interviewed to find out
if they had been aware of any patterns in the presentation; they had not.

« A study by Reber and Kas$tt’™ compared implicit and explicit pattern detection. Subjects were
asked to memorize sets of words containing the le®e& T, V, or X. Most of these words had been
generated using a finite state grammar. However, some of the sets contained words that had not bee
generated according to the rules of this grammar. One group of subjects thought they were taking
part in a purely memory-based experiment; the other group was also told to memorize the words but
was also told of the existence of a pattern to the letter sequences and that it would help them in the
task if they could deduce this pattern. The performance of the group that had not been told about the
presence of a pattern almost exactly mirrored that of the group who had been told on all sets of words
(pattern words only, pattern plus non-pattern words, non-pattern words only). Without being told to
do so, subjects had used patterns in the words to help perform the memorization task.

« A study carried out by Berry and BroadbBHt! asked subjects to perform a task requiring decision
making using numerical quantities. In these experiments subjects were told that they were in charge
of a sugar production factory. They had to control the rate of sugar production to ensure it kept at
the target rate of 9,000 tons. The only method of control available to them was changing the size of
the workforce. Subjects were not told anything about the relationship between the current production
rate, the number of workers and previous production rates. The starting point was 600 workers and an
output rate of 6,000 tons. Subjects had to specify the number of workers they wished to employ and
were then told the new rate of production (interaction was via a terminal connected to a computer).
At the end of the experiment, subjects had to answer a questionnaire about the task they had jus
performed. The results showed that although subjects had quickly learned to keep the rate of sugal
production close to the desired level, they were unable to verbalize how they achieved this goal.

The studies performed by these and other researchers demonstrate that it is possible for people to perfori
quite complex tasks using knowledge that they are not consciously aware of having. By working with other
C developers and reading existing C source code, developers obtain the nonverbalized knowledge that is pa
of the unwritten culture of C. This knowledge is expressed by developers having expectations and making
assumptions about software development in C.

Another consequence of being immersed within existing practice is that developers use the characteris
tics of different entities to form categories. This categorization provides a mechanism for people to make
generalizations based on relatively small data sets. A developer working with C source code which has
been written by other people will slowly build up a set of assumptions and expectations of the general
characteristics of this code.

40 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

A study by Nisbett, Krantz, Jepson and KuKd3 illustrates peoples propensity to generalize, based on
past experience. Subjects were given the following scenario. (Some were told that three samples of each
object was encountered, while other subjects were told that 20 samples of each object was encountered.)

Imagine that you are an explorer who has landed on a little-known island in the Southeastern Pacific.
You encounter several new animals, people, and objects. You observe the properties of your "sgmples”
and you need to make guesses about how common these properties would be in other animals| people,
or objects of the same type:

1. suppose you encounter a new bird, the shreeble. Itis blue in color. What percent of all shreebles
on the island do you expect to be blue?

2. suppose the shreeble you encounter is found to nest in a eucalyptus tree, a type of treg that is
fairly common on this island. What percentage of all shreebles on the island do you expect to
nest in a eucalyptus tree?

3. suppose you encounter a native, who is a member of a tribe called the Barratos. He is|obese.
What percentage of the male Barratos do you expect to be obese?

4. suppose the Barratos man is brown in color. What percentage of male Barratos do you expect be
brown (as opposed to red, yellow, black, or white)?

5. suppose you encounter what the physicist on your expedition describes as an extremely rare
element called floridium. Upon being heated to a very high temperature, it burns with a green
flame. What percentage of all samples of floridium found on the island do you expect to|burn
with a green flame?

6. suppose the samples of floridium, when drawn into a filament, is found to conduct electricity.
What percentage of all samples of floridium found on the island do you expect to conduct elec-
tricity?

The results show that subjects used their knowledge of the variability of properties in estimating the
probability that an object would have that property. For instance, different samples of the same element are
not expected to exhibit different properties, so the number of cases in a sample did not influence estimated
probabilities. However, people are known to vary in their obesity, so the estimated probabilities were much
lower for the single sample than the 20 case sample.

The lesson to be learned here is a general one concerning the functionality of objects and functions that
are considered to form a category. Individual members of a category (e.g., a source file or structure type
created by a developer) should have properties that would not be surprising to somebody who was only
familiar with a subset of the members (see Figure 0.9).

Having expectations and making assumptions (or more technically, using inductive reasoning) can be
useful in a slowly changing world (such as the one inhabited by our ancestors). They provide a framework
from which small amounts of information can be used to infer, seemingly unconnected (to an outsider),
conclusions. Is there a place for implicit expectations and assumptions in software development? A strong
case can be made for saying that any thought process that is not based on explicit knowledge (which can be
stated) should not be used when writing software. In practice use of such knowledge, and inductive reason-
ing based on it, appears to play an integral role in human thought processes. A guideline recommendation
that developers not use such thought processes may be difficult, if not impossible, to adhere to.

These coding guidelines don’t seek to change what appears to be innate developer (human) behavior.
The approach taken by these guidelines is to take account of the thought processes that developers use, and
to work within them. If developers have expectations and make assumptions, then the way to deal with

June 16, 2005 v 1.0a 41

_ Introduction 9 Background to these coding guidelines

100 —
z S==_ _ _ Floridium-Conductivity
g, = Floridium-Color
IS | Barratos-Color
& Shreeble-Nests
2 Shreeble-Color
4 80 —] .
3 Barratos-Obesity
=
8
= 1
3
1=}
£
g
= 60 —
.S
=
=
E)
o —
1)
(=
—
S
5 40—
2
5}
fawt

1 3 20

Cases in sample

Figure 0.9: Percentage of population estimated to have the sample property against the number of cases in the sample. Adapted
from Nisbettl?70]

them is to find out what they are and to ensure that, where possible, source code follows them (or at leas
does not exhibit behavior that differs significantly from that expected). This approach means that these
recommendations are tuned to the human way of comprehending C source code.

statementi0% The issue of implicit knowledge occurs in several coding guidelines.
e 9.1.1 Aims and motivation
|denst;fn|g 787 L _ . _ .
developer What are developers trying to do when they read and write source code? They are attempting to satisfy ¢
motivations variety of goals. These goals can be explicit or implicit. One contribution cognitive psychology can make
is to uncover the implicit goals, and perhaps to provide a way of understanding their effects (with the aim
of creating guideline recommendations that minimize any undesirable consequences). Possible develope

aims and motives include (roughly from higher level to lower level) the following:
» Performing their role in a development project (with an eye on promotion, for the pleasure of doing a
good job, or doing a job that pays for other interests).
¢ Carrying out a program-modification task.
 Extracting information from the source by explicitly choosing what to pay attention to.

ﬂvecgﬁgi;" « Minimizing cognitive effort; for instance, using heuristics rather than acquiring all the necessary
information and using deductive logic.

« Maximizing the pleasure they get out of what they are doing.

belief main- o « Belief maintenance: studies have found that people interpret evidence in ways that will maintain their
existing beliefs.

The act of reading and writing software has an immediate personal cost. It is the cognitive load on a
developer’s brain (physical effort is assumed to be small enough that it has no significant cost, noticeable tc
the developer). Various studies have shown that people try to minimize cognitive effort when performing
tasksi**!l A possible consequence of minimizing this effort is that people’s actions are not always those

42 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

that would be predicted on the basis of correct completion of the task at hand. In other words, people make
mistakes because they do not invest sufficient effort to carry out a task correctly.

When attempting to solve a problem, a person’s cognitive system is assumed to make cost/accth@ayturacy
trade-offs. The details of how it forms an estimate of the value, cost, and risk associated with an actiorf2-o"
and carries out the trade-off analysis is not known. A study by Fu and®®¥gyrovides a good example
of the effects of these trade-offs on the decisions made by people when performing a task. Subjects were
given the task of copying a pattern of colored blocks (on a computer-generated display). To carry out the
task subjects had to remember the color of the block to be copied and its position in the target pattern, a
memory effort. A perceptual-motor effort was introduced by graying out the various areas of the display
where the colored blocks were visible. These grayed out areas could be made temporarily visible using
various combinations of keystrokes and mouse movements. When performing the task, subjects had the
choice of expending memory effort (learning the locations of different colored blocks) or perceptual-motor
effort (using keystrokes and mouse movements to uncover different areas of the display). A subject’s total
effort was equal to the sum of the perceptual motor effort and the memory storage and recall effort. The
extremes of possible effort combinations are: (1) minimize the memory effort by remembering the color and
position of a single block, which requires the perceptual-motor effort of uncovering the grayed out area for
every block, or (2) minimize perceptual effort by remembering information on as many blocks as possible
(this requires uncovering fewer grayed areas).

The subjects were splitinto three groups. The experiment was arranged such that one group had to expend
a low effort to uncover the grayed out areas, the second acted as a control, and the third had to expend a
high effort to uncover the grayed out areas. The results showed that the subjects who had to expend a high
perceptual-motor effort, uncovered grayed out area fewer times than the other two groups. These subjects
also spent longer looking at the areas uncovered, and moved more colored blocks between uncoverings. The
subjects faced with a high perceptual-motor effort reduced their total effort by investing in memory effort.
Another consequence of this switch of effort investment, to use of memory, was an increase in errors made.

When reading source code, developers may be faced with the same kind of decision. Having looked at
and invested effort in memorizing information about a section of source code, should they invest perceptual-
motor effort when looking at a different section of source that is affected by the previously read source
to verify the correctness of the information in their memory? A commonly encountered question is the C
language type of an object. A developer has to decide between searching for the declaration or relying on
information in memory.

A study by Schunn, Reder, Nhouyvanisvong, Richards, and Strofftiffound that a subject’s degree
of familiarity with a problem was a better predictor, than retrievability of an answer, of whether subjects
would attempt to retrieve or calculate the answer to a problem.
o effort vs.

The issue of cognitive effort vs. accuracy in decision making is also discussed elsewhere. accuracy

decision making

Experience shows that many developers believe that effadgencyis an important attribute of code
quality. This belief is not unique to the culture of C and has a long histéBWhile efficiency remains an
issue in some application domains, these coding guidelines often treat efficiency as a cause of undesirable
developer behavior that needs to be considered (with a view handling the possible consequences).

Experience also shows that when presented with a choice developer decisions are affected by their ey min-
estimates of the amount of typing they will need to perform. Typing minimization behavior can include ™?ztn
choosing abbreviated identifier names, using cut-and-paste to copy sections of code, using keyboard short-
cuts, and creating editor macros (which can sometimes require significantly more effort than they save).

Experience has shown that some developers equate visual compactness of source code with rutiagcom-
efficiency of the translated program. While there are some languages where such a correlation existg, (€' =90
some implementations of Basic, mostly interpreter based and seen in early hobbiest computers, perform
just in time translation of the source code), it does not exist for C. This is an issue that needs to be covered

during developer education.

June 16, 2005 v 1.0a 43

_ Introduction 9 Background to these coding guidelines

9.2 Selecting guideline recommendations

guidelinerec- NO attempt has been made to keep the number of guideline recommendations within a prescribed limit. Itis
SQTQ;%R%""“O”S not expected that developers should memorize them. Managers are expected to select guidelines based |

their cost effectiveness for particular projects.

Leaving the number of guideline recommendations open-ended does not mean that any worthwhile sounc
ing idea has been written up as a guideline. Although the number of different coding problems that could be
encountered is infinite, an endless list of guidelines would be of little practical use. Worthwhile recommen-
dations are those that minimize both the likelihood of faults being introduced by a developer or the effort
needed by subsequent developers to comprehend the source code. Guideline recommendations coveril
situations that rarely occur in practice are wasted effort (not for the developers who rarely get to see them
but for the guideline author and tool vendors implementing checks for them).

guidelines These coding guidelines are not intended to recommend against the use of constructs that are obviousl

not faults faults (i.e., developers have done something by mistake and would want to modify the code if the usage
was pointed out to them). For instance, a guideline recommending against the use of uninitialized objects is
equivalent to a guideline recommending against faults (i.e., pointless). Developers do not need to be giver
recommendations not to use these constructs. Guidelines either recommend against the use of construc
that are intentionally used (i.e., a developer did not use them by mistake) in a conforming program (any con:
structs that would cause a conforming translator to issue a diagnostic are not included), or they recomment
that a particular implementation technique be used.

These guidelines deal with the use of C language constructs, not the design decisions behind their sele
tion. It is not the intent to discuss how developers choose to solve the higher-level design and algorithmic
issues associated with software development. These guidelines deal with instances of particular construct
at the source code level.

Source code faults are nearly always clichés; that is, developers tend to repeat the mistakes of other
and their own previous mistakes. Not every instance of a specific construct recommended against by ¢
guideline (e.g., an assignment operator in a conditional expressforix = v)) need result in a fault.
However, because a sufficient number of instances have caused faults to occur in the past, it is considere
to be worthwhile recommending against all usage of a construct.

Guidelines covering a particular construct cannot be considered in isolation from the rest of the language
The question has to be asked, of each guideline: “if developers are not allowed do this, what are they going
to do instead?” A guideline that effectively forces developers into using an even more dangerous construct
is a lot more than simply a waste of time. For instance, your authors experience is that placing too many
restrictions on how enumerated constants are defined leads to developers using macro names instead—
counterproductive outcome.

Selecting guideline recommendations based on the preceding criteria requires both a detailed inventory o
software faults for the C language (no distinction is made between faults that are detected in the source an
faults that are detected as incorrect output from a program) and some measure of developer comprehensic

developer o K
program corr effort. Developer comprehension is dlscyssed .elsewhere. There have. been relatively few reliable studie:
of software faults (Knuth’€?! log of faults in X is one such; see Frederi¢f®! for a survey). Some of
those that have been published have looked at faults that occur during initial develdi3fieand faults
that occur during the evolution of an application, its maintenance pEfib¢3?!

Guidelines that look worthy but lack empirical evidence for their cost effectiveness should be regarded
with suspicion. The field of software engineering has a poor track record for experimental research. Stud
ied840.1436lhave found that most published papers in software related disciplines do not include any exper-
imental validation. Whenever possible this book quotes results based on empirical studies (for the mea
surements by the author, either the raw data or the source code of the programs that generated the data ¢
available from the authBf*™!). Sometimes results from theoretical derivations are used. As a last resort,
common practices and experience are sometimes quoted. Those studies that have investigated issues re
ing to coding practices have often used very inexperienced subjects (students studying at a university). The

44 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

results of these inexperienced subject-based studies have been ignored. o experimental

studies

« A study by Thayer, Lipow, and NelsB#?¢! looked at several Jovial (a Fortran-like language) projects
during their testing phase. It was advanced for its time, using tools to analyze the source and being
rigorous in the methodology of its detailed measurements. The study broke new ground: “Based on
error histories seen in the data, define sets of error categories, both causative and symptomatic, to be
applied in the analysis of software problem reports and their closure.” Unfortunately, the quality of
this work was not followed up by others and the detail provided is not sufficient for our needs here.

« Hattorf®3! provides an extensive list of faults in C source code found by a static analysis tool. The
tool used was an earlier version of one of the tools used to gather the usage information for thi§’BR98k.

* Perry1032 |ooked at the modification requests for a 1 MLOC system that contained approximately
15% to 20% new code for each release. As well as counting the number of occurrences of each fault
category, a weight was given to the effort required to fix them.

Table 0.2: Fault categories ordered by frequency of occurrence. The last column is the rank position after the fault fix weighting
factor is taken into account. Based on Péj2]

Rank Fault Description % Total Fix Rank Fault Description % Total Fix
Faults Rank Faults Rank
1 internal functionality 25.0 13 12 error handling 3.3 6
2 interface complexity 11.4 10 13 primitive’s misuse 2.4 11
3 unexpected dependencies 8.0 4 14 dynamic data use 2.1 15
4 low-level logic 7.9 17 15 resource allocation 15 2
5 design/code complexity 7.7 3 16 static data design 1.0 19
6 other 5.8 12 17 performance 0.9 1
7 change coordinates 49 14 18 unknown interactions 0.7 5
8 concurrent work 4.4 9 19 primitives unsupported 0.6 19
9 race conditions 4.3 7 20 IPC rule violated 0.4 16
10 external functionality 3.6 8 21 change management 0.3 21
complexity
11 language pitfalls i.e., use 3.5 18 22 dynamic data design 0.3 21

of = when == intended

Looking at the results (shown in Table 0.2) we see that although performance is ranked 17th in terms
of number of occurrences, it moves up to first when the effort to fix is taken into account. Resource
allocation also moves up the rankings. The application measured has to operate in realtime, so perfor-
mance and resource usage will be very important. The extent to which the rankings used in this case
apply to other application domains is likely to depend on the application domain. Perry also measured
the underlying causes (see Table 0.3) and the means of fault prevention (see Table 0.4).

Table 0.3: Underlying cause of faults. Theone givercategory occurs because sometimes both the fault and the underlying
cause are the same. For instaaaguage pitfalls or low-level logic Based on Perri-032

Rank Cause Description % Total Fix
Causes Rank

1 Incomplete/omitted design 25.2 3
2 None given 20.5 10
3 Lack of knowledge 17.8 8
4 Ambiguous design 9.8 9
5 Earlier incorrect fix 7.3 7
6 Submitted under duress 6.8 6
7 Incomplete/omitted requirements 5.4 2
8 Other 4.1 4
9 Ambiguous requirements 2.0 1
10 Incorrect modifications 11 5

June 16, 2005 v 1.0a 45

_ Introduction 9 Background to these coding guidelines

Table 0.4: Means of fault prevention. The last column is the rank position after the fault fix weighting factor is taken into
account. Based on Per32]

Rank Means Description % Ob- Fix
served Rank

1 Application walk-through 245 8
2 Provide expert/clearer documentation 15.7 3
3 Guideline enforcement 13.3 10
4 Requirements/design templates 10.0 5
5 Better test planning 9.9 9
6 Formal requirements 8.8 2
7 Formal interface specifications 7.2 4
8 Other 6.9 6
9 Training 2.2 1
10 Keep document/code in sync 15 7

« A study by Glasé" looked at what he callepersistent software errorsGlass appears to make an
implicit assumption that faults appearing late in development or during operational use are somehow
different from those found during development. The data came from analgoiitggare problem
reportsfrom two large projects. There was no analysis of faults found in these projects during devel-
opment.

Your author knows of no study comparing differences in faults found during early development, different
phases of testing and operational use. Until proven otherwise, these Coding guideline subsections treat th
faults found during different phases of development as having the same characteristics.

Usage o More detailed information on the usage of particular C constructs is given in the Usage sections of this
book. While this information provides an estimate of the frequency-of-occurrence of these constructs, it
does not provide any information on their correlation to occurrences of faults. These frequency of oc-
currence measurements were used in the decision process for deciding when particular constructs migt
warrant a guideline (the extent to which frequency of occurrence might affect developer performance. Note

gﬁgggn';g() that power law of learning is not considered here.
The selection of these guidelines was also influenced by the intended audience of developers, the type
of programs they work on, and the priorities of the environment in which these developers work as follows:
» Developers are assumed to have imperfect memory, work in a fashion that minimizes their cognitive
load, are not experts in C language and are liable to have incorrect knowledge about what they think
C constructs mean; and have an incomplete knowledge base of the sources they are working or
Although there may be developers who are experts in C language and the source code they are workin
on, it is assumed here that such people are sufficiently rare that they are not statistically significant;
coding o in general these Coding guideline subsections ignore them. A more detailed discussion is given
gu;cei\f,;lli)rgsz elsewhere.
coding o Applications are assumed to be large (over 50 KLOC) and actively worked on by more than one
gu:)('ijlell?es developer.
¢ Getting the software right is only one of the priorities in any commercial development group. Costs
coding o and time scales need to be considered. Following coding guidelines is sometimes a small componen
guidelines of what can also be a small component in a big project.

cost drivers

9.2.1 Guideline recommendations must be enforceable

guideline rec- A guideline recommendation that cannot be enforced is unlikely to be of any use. Enforcement introduces

gmmendation several practical issues that constrain the recommendations made by guidelines, including the following:

46 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

 Detecting violationslt needs to be possible to deduce (by analyzing source code) whether a guideline
is, or is not, being adhered to. The answer should always be the same no matter who is asking the
question (i.e., the guidelines should be unambiguous).

< Removing violations.There needs to be a way of rewriting the source so that no guideline is vio-
lated. Creating a situation where it is not possible to write a program without violating one or other
guidelines debases the importance of adhering to guidelines and creates a work environment that
encourages the use of deviations.

« Testing modified programdesting can be a very expensive process. The method chosen, by deyeédeiine rec-
opers, to implement changes to the source may be based on minimizing the possible impact qSEfEIaon
parts of a program, the idea being to reduce the amount of testing that needs to be done (or 8%} cost
that appears to be needed to be done). Adhering to a guideline should involve an amount of effort that
is proportional to the effort used to make changes to the source. Guidelines that could require a major
source restructuring effort, after a small change to the source, are unlikely to be adhered to.

The procedures that might be followed in checking conformance to guidelines are not discussed in this book.
A number of standards have been published dealing with this ig<tf8 6321

A project that uses more than a handful of guidelines will find it uneconomical and impractical to enforce
them without some form of automated assistance. Manually checking the source code against all guidelines
is likely to be expensive and error prone (it could take a developer a working week simply to learn the guide-
lines, assuming 100 rules and 20 minutes study of each rule). Recognizing that some form of automated
tool will be used, the wording for guidelines needs to be algorithmic in style.

There are situations where adhering to a guideline can get in the way of doing what needs to be done.
Adhering to coding guidelines rarely has the highest priority in a commercial environment. Experience has
shown that these situations can lead either to complete guideline recommendations being ignored, or be the
thin end of the wedge that eventually leads to the abandonment of adherence to any coding guideline. The
solution is to accept that guidelines do need to be broken at times. This fact should not be swept under the
carpet, but codified into a deviations mechanism.

9.2.1.1 Uses of adherence to guidelines
While reducing the cost of ownership may be the aim of these guideline recommendations, others may see
them as having other uses. For instance, from time to time there are calls for formal certification of source
code to some coding guideline document or other. Such certification has an obvious commercial benefit to
the certification body and any associated tools vendors. Whether such certification provides a worthwhile
benefit to purchasers of software is debat&é!

Goodhart's lal! deals with the impact of external, human pressure on measurement and is applicable
here. One of its forms is: “When a measure becomes a target, it ceases to be a good measure.'&tththern
describes how the use of a rating system changed the nature of university research and teaching.

Whether there is a greater economic benefit, to a company, in simply doing what is necessary to gain
some kind of external recognition of conformance to a coding guideline document (i.e., giving little weight
to the internal cost/benefit analysis at the source code level), or in considering adherence to guideline rec-
ommendations as a purely internal cost/benefit issue is outside the scope of this book.

9.2.1.2 Deviations
A list of possible deviations should be an integral part of any coding guideline. This list is a continuation Ofieviations
the experience and calculation that forms part of every guideline. coding guidelines
The arguments made by the advocates of Total Quality Manag&hfeappear to be hard to argue
against. The relentless pursuit of quality is to be commended for some applications, such as airborne systems

0-1professor Charles Goodhart, FBA, was chief adviser to the Bank of England da hias originally aimed at financial measures
(i.e., “As soon as the government attempts to regulate any particular set of financial assets, these become unreliable as indicators of
economic trends.”).

June 16, 2005 v 1.0a 47

_ Introduction 9 Background to these coding guidelines

developer o
expertise

and medical instruments. Even in other, less life-threatening, applications, quality is often promoted as a
significant factor in enhancing customer satisfaction. Who doesn’t want fault-free software? However,
in these quality discussions, the most important factor is often overlooked— financial and competitive
performance— (getting a product to market early, even if it contains known faults, is often much more
important than getting a fault-free product to market later). Delivering a fault-free product to market late
can result in financial ruin, just as delivering a fault prone product early to market. These coding guidelines
aim of reducing the cost of software ownership needs to be weighed against the broader aim of creating
value in a timely fashion. For instance, the cost of following a particular guideline may be much greater
than normal, or an alternative technique may not be available. In these situations a strong case can be mac
for not adhering to an applicable guideline.

There is another practical reason for listing deviations. Experience shows that once a particular guideline
has not been adhered to in one situation, developers find it easier not to adhere to it in other situations
Management rarely has access to anybody with sufficient expertise to frame a modified guideline (deviation)
appropriate to the situation, even if that route is contemplated. Experience shows that developers rarely
create a subset of an individual guideline to ignore; the entire guideline tends to be ignored. A deviation can
stop adherence to a particular guideline being an all-or-nothing decision, helping to prevent the leakage of
nonadherence. Deviations can provide an incremental sequence (increasing in cost and benefit) of decisio
points.

Who should decide when a deviation can be used? Both the authors of the source code and their imme
diate managers may have a potential conflict of interest with the longer-term goals of those paying for the
development as follows:

» They may be under pressure to deliver a release and see use of a deviation as a short-cut.

« They may not be the direct beneficiaries of the investment being made in adhering to coding guide-
lines. Redirecting their resources to other areas of the project may seem attractive.

« They may not have the skill or resources needed to follow a guideline in a particular case. Admitting
one’s own limitations is always hard to do.

The processes that customers (which may be other departments within the same company) put in place t
ensure that project managers and developers follow agreed-on practices are outside the scope of this boc
Methods for processing deviation requests include:

« referring all requests to an expert. This raises the question of how qualifiedx@ertmust be to
make technical decisions on deviations.

» making deviation decisions during code review.
« allowing the Q/A department to have the final say about which deviations are acceptable.

However, permission for the use of a deviation is obtained, all uses need to be documented. That is, eacl
source construct that does not adhere to the full guideline, but a deviation of that guideline, needs to be
documented. This documentation may simply be a reference to one location where the rationale for that
deviation is given. Creating this documentation offers several benefits:

« It ensures that a minimum amount of thought has been given to the reasons for use of a deviation.

« It may provide useful information to subsequent developers. For instance, it can provide an indication
of the number of issues that may need to be looked at when porting to a new translator, and the
rationale given with a deviation can provide background information on coding decisions.

« It provides feedback to management on the practical implications of the guidelines in force. For
instance, is more developer training required and/or should particular guidelines be reviewed (and
perhaps reworded)?

48 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

Information given in the documentation for a deviation may need to include the following:

» The cost/benefit of following the deviation rather than the full guideline, including cost estimates.
 The risks associated with using the deviation rather than the full guideline recommendation.
» The alternative source code constructs and guidelines considered before selecting the deviation.

9.2.2 Code reviews
Some coding guidelines are not readily amenable to automatic enforcement. This can occur eithefod2@eviews
cause they involve trade-offs among choices, or because commercial tool technology is not yet sufficiently
advanced. The solution adopted here is to structure those guidelines that are not amenable to automatic
enforcement so that they can be integrated into a code review process.

It is expected that those guideline recommendation capable of being automatically checked will have
been enforced before the code is reviewed. Looking at the output of static analysis tools during code review
is usually an inefficient use of human resources. It makes sense for the developers writing the source code
to use the analysis tools regularly, not just prior to reviews.

These coding guidelines are not intended to cover all the issues that should be covered during reviews.
Problems with the specification, choice of algorithms, trade-offs in using constructs, agreement with the
specification, are among the other issues that should be considered.

The impact of code reviews goes beyond the immediate consequences of having developers read and
comment on each other’s code. Knowing that their code is to be reviewed by others can affect developer’s
decision— making strategy. Even hypothetical questions raised during a code review can change su‘tﬁg@m‘%nt
decision making*®!

Code reviews are subject to the same commercial influences as other development activities; they require
an investment of resources (the cost) to deliver benefits. Code reviews are widely seen as a good idea and
are performed by many development groups. The most common rationale given for having code reviews is
that they are a cost effective means of detecting faults. A recent réti@as questioned this assumption,
based on the lack of experimental evidence showing it to be true. Another reason for performing code
reviews is the opportunity it provides for more senior developers to educate junior staff about the culture of
a development group.

Organizations that have a formal review procedure often follow a three-stage process of preparation,
collection, and repair. During preparation, members of the review team read the source looking for as many
defects as possible. During review the team as a whole looks for additional defects and collates a list of
agreed-on defects. Repair is the resolution of these defects by the author of the source.

Studies by Porter, Siy, Mockuss, and V8t##-100lto determine the best form for code reviews found
that: inspection interval and effectiveness of defect detection were not significantly affected by team size
(large vs. small), inspection interval and effectiveness of defect detection were not significantly affected by
the number of sessions (single vs. multiple), and the effectiveness of defect detection was not improved by
performing repairs between sessions of two-session inspections (however, inspection interval was signifi-
cantly increased). They concluded that single-session inspections by small teams were the most efficient
because their defect-detection rate was as good as other formats, and inspection interval was the same or
less.

9.2.3 Guideline wording
The wording used in the guideline recommendations is short and to the point (and hopefully unambiguous).
It does assume some degree of technical knowledge.

There are several standards dealing with the wording used in the specification of computer languages,
including: Guidelines for the preparation of programming language stand&f3sandGuidelines for the
preparation of conformity clauses in programming language stand&feis

The principles of designing and documenting procedures to be carried out by others are thoroughly
covered by Degani and Wiengf®!

June 16, 2005 v 1.0a 49

_ Introduction 9 Background to these coding guidelines

9.3 Relationship among guidelines

coding guidelines INdividual guideline recommendations do not exist in isolation. They are collected together to form a set of

relationship
among

guideline rec-
ommendations
how they work

developer
differences

coding guidelines. Several properties are important in a set of guideline recommendations, including:

* It must be possible to implement the required algorithmic functionality without violating any of the
guidelines in a set.

» Consistency among guidelines within a set is a worthwhile aim.

» Being able to enforce all the members in a set of guidelines using the same processes is a worthwhile
aim.

As a complete set, the guideline recommendations in this book do not meet all of these requirements, bu
it is possible to create a number of sets that do meet them. It is management’s responsibility to select the
subset of guidelines applicable to their development situation.

9.4 How do guideline recommendations work?

How can adhering to these coding guidelines help reduce the cost of software ownership? The following
are possible mechanisms:

¢ Reduce the number of faults introduced into source code by recommending against the use of con
structs known to have often been the cause of faults in the past. For instance, by recommending
against the use of an assignment operator in a conditional expressidi, = y).

» Developers have different skills and backgrounds. Adhering to guidelines does not make developers
write good code, but these recommendations can help prevent them from writing code that will be
more costly than necessary to maintain.

» Developers’ programming experience is often limited, so they do not always appreciate all the implica-
tions of using constructs. Guideline recommendations provide a prebuilt knowledge net. For instance,
they highlight constructs whose behavior is not as immutable as developers might have assumed. The
most common response your author hears from developers is “Oh, | didn’t know that”.

The primary purpose of coding guidelines is not usually about helping the original author of the code
(although as a user of that code they can be of benefit to that person). Significantly more time and effort are
spent maintaining existing programs than in writing new ones. For code maintenance, being able to easily
extract information from source code, in order to predict the behavior of a program (sometimes called
program comprehensignis an important issue.

Does reducing the cognitive effort needed to comprehend source code increase the rate at which deve
opers comprehend it and/or reduce the number of faults they introduce into it? While there is no direct
evidence proving that it does, these coding guideline subsections assume that it does.

9.5 Developer differences
To what extent do individual developer differences affect the selection and wording of coding guidelines?

To answer this question some of the things we would need to know include the following:
* the attributes that vary between developers,

+ the number of developers (ideally the statistical distribution) having these different attributes and to
what extent they possess them, and

« the affect these attribute differences have on developers’ performance when working with source
code.

50 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

Psychologists have been studying and measuring various human attributes for many years. These studies
are slowly leading to a general understanding of how human cognitive processes operate. Unfortunately,
there is no experimentally verified theory about the cognitive processes involved in software development.
So while a lot of information on the extent of the variation in human attributes may be known, how these
differences affect developers’ performance when working with source code is unknown.

The overview of various cognitive psychology studies, appearing later in this introduction, is not primar-
ily intended to deal with differences between developers. It is intended to provide a general description
of the characteristics of the mental processing capabilities of the human mind. Strengths, weaknesses, and
biases in these capabilities need to be addressed by guidelines. Sometimes the extent of individuals’ ca-
pabilities do vary significantly in some areas. Should guidelines address the lowest common denominator
(anybody could be hired), or should they assume a minimum level of capability (job applicants need to be
tested to ensure they are above this level)?

What are the costs involved in recommending that the capabilities required to comprehend source code
not exceed some maximum value? Do these costs exceed the likely benefits? At the moment these questions
are somewhat hypothetical. There are no reliable means of measuring developers’ different capabilities, as
they relate to software development, and the impact of these capabilities on the economics of software
development is very poorly understood. Although the guideline recommendations do take account of the
capability limitations of developers, they are frustratingly nonspecific in setting boundaries.

These guidelines assume some minimum level of knowledge and programming competence on the part
of developers. They do not require any degree of expertise (the issue of expertise is discussed elsdgmﬁsgéﬁf

» A study by Monaghdf!® 92%|ooked at measures for discriminatiagility andstylethat are relevant
to representational and strategy differences in people’s problem solving.

« A study by Oberlander, Cox, Monaghan, Stenning, and T9irinvestigated student responses to
multimodal (more than one method of expression, graphical and sentences here) logic teaching. They
found that students’ preexisting cognitive styles affected both the teaching outcome and the structure
of their logical discourse.

« A study by MacLeod, Hunt and Mathe®®! looked at sentence—picture comprehension. They found

one group of subjects used a comprehension strategy that fit a linguistic model, while another group

used a strategy that fit a pictorial-spatial model. A psychometric test of subjects showed a high

correlation between the model a subject used and their spatial ability (but not their verbal ability).

Sentence—picture comprehension is discussed in more detail elsewhere. In most cases C soungewasela-
. . . . tionships

ally appears, to readers, in a single mode, linear text. Although some tools are capable of displayin

alternative representations of the source, they are not in widespread use. The extent to which a devel-

oper’s primary mode of thinking may affect source code comprehension in this form is unknown.

The effect of different developer personalities is discussed elsewhere, as are working memory, reaoﬁﬁ%ﬁ%ﬁh,
rate of information processing, the affects of age, and cultural differences. Although most developgfaare

male*!? gender differences are not discussed. e eveqeing span
computational
9.6 What do these guidelines apply to? ss7identifier

information

A program (at least those addressed by these Coding guidelines) is likely to be built from many souseeifiss.
Each source file is passed through eight phases of translation. Do all guidelines apply to every sotigedile

: . - . bili
during every phase of translation? No, they do not. Guideline recommendations are created for aL@,&?méPﬁ/
. t

of different reasons and the rationale for the recommendation may only be applicable in certain casegafor

instance: gt e
’ coding guidelines
what applied to?

108source files
n

» Reduce the cognitive effort needed to comprehend a program usually apply to the visible SOUrGearGie
That is, the source code as viewed by a reader, for example, in an editor. The result of prepro@ésaimgess-
ing

June 16, 2005 v 1.0a 51

_ Introduction 9 Background to these coding guidelines

may be a more complicated expression, or sequence of nested constructs than specified by a guid
line recommendation. But, because developers are not expected to have to read the output of the
preprocessor, any complexity here may not be relevant,

« Common developer mistakes may apply during any phase of translation. The contexts should be
apparent from the wording of the guideline and the construct addressed.

« Possible changes in implementation behavior can apply during any phase of translation. The contexts
should be apparent from the wording of the guideline and the construct addressed.

< During preprocessing, the sequence of tokens output by the preprocessor can be significantly differen
from the sequence of tokens (effectively the visible source) input into it. Some guideline recommen-
dations apply to the visible source, some apply to the sequence of tokens processed during syntax an
semantic analysis, and some apply during other phases of translation.

« Different source files may be the responsibility of different development groups. As such, they may
be subject to different commercial requirements, which can affect management’s choice of guidelines
applied to them.

« The contents of system headers are considered to be opaque and outside the jurisdiction of thes
guideline recommendations. They are provided as part of the implementation and the standard gives
implementations the freedom to put more or less what they like into them (they could even contain

privcader 1677 some form of precompiled tokens, not source code). Developers are not expected to modify system
headers.

» Macros defined by an implementation (e.g., specified by the standard). The sequence of tokens thes
macros expand to is considered to be opaque and outside the jurisdiction of these coding guidelines
These macros could be defined in system headers (discussed previously) or internally within the trans
lator. They are provided by the implementation and could expand to all manner of implementation-
defined extensions, unspecified, or undefined behaviors. Because they are provided by an implemer
tation, the intended actual behavior is known, and the implementation supports it. Developers can use
these macros at the level of functionality specified by the standard and not concern themselves with
implementation details.

Applying these reasons in the analysis of source code is something that both automated guideline enforce
ment tools and code reviewers need to concern themselves with.

It is possible that different sets of guideline recommendations will need to be applied to different source
files. The reasons for this include the following:

» The cost effectiveness of particular recommendations may change during the code’s lifetime. During
initial development, the potential savings may be large. Nearer the end of the application’s useful life,
the savings achieved from implementing some recommendations may no longer be cost effective.

» The cost effectiveness of particular coding guidelines may vary between source files. Source contain:
ing functions used by many different programs (e.qg., application library functions) may need to have a
higher degree of portability, or source interfacing to hardware may need to make use of representation
information.

« The source may have been written before the introduction of these coding guidelines. It may not be
cost effective to modify the existing source to adhere to all the guidelines that apply to newly written
code.

Itis management’s responsibility to make decisions regarding the cost effectiveness of applying the different
guidelines under differing circumstances.

Some applications contain automatically generated source code. Should these coding guidelines appl
to this kind of source code? The answer depends on how the generated source is subsequently used. If it

52 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

treated as an invisible implementation detail (i.e., the fact that C is generated is irrelevant), then C guideline
recommendations do not apply (any more than assembler guidelines apply to C translators that chose to
generate assembler as an intermediate step on the way to object code). If the generated source is to be
worked on by developers, just like human-written code, then the same guidelines should be applied to it as
to human written code.

9.7 When to enforce the guidelines

Enforcing guideline recommendations as soon as possible (i.e., while developers are writing the cad@jghaselines
several advantages, including: when to enforce

« Providing rapid feedback has been sh&&# to play an essential role in effective learning. Hav-
ing developers check their own source provides a mechanism for them to obtain this kind of rapid
feedback.

« Once code-related decisions have been made, the cost of changing them increases as time goes by
and other developers start to make use of them.

» Developers’ acceptance is increased if their mistakes are not made public (i.e., they perform the
checking on their own code as it is written).

It is developers’ responsibility to decide whether to check any modified source before using the compiler,
or only after a large number of modifications, or at some other decision point. Checking in source to a
version-control system is the point at which its adherence to guidelines stops being a private affair.

To be cost effective, the process of checking source code adherence to guideline recommendations needs
to be automated. However, the state of the art in static analysis tools has yet to reach the level of sophisti-
cation of an experienced developer. Code reviews are the suggested mechanism for checking adherence to
some recommendations. An attempt has been made to separate out those recommendations that are proba-
bly best checked during code review. This is not to say that these guideline recommendations should not be
automated, only that your author does not think it is practical with current, and near future, static analysis
technology.

The extent to which guidelines are automatically enforceable, using a tool, depends on the sophistication
of the analysis performed; for instance, in the following (use of uninitialized objects is not listed as a
guideline recommendation, but it makes for a simple example):

extern int glob;
extern int g(void);

void f(void)
{

int loc;

if (glob == 3)

loc = 4;
if (glob == 3)

loc++; /* Does loc have a defined value here? */
if (glob == 4)

loc--; /* Does loc have a defined value here? */
if (g() == 2)

loc = 9;
if (g() == glob)

++loc;

© 0 N e O A W N e

PR R R R R R R
N o o0 b W N P O

}

i
3

The existing value oloc is modified when certain conditions are true. Knowing that it has a defined value
requires analysis of the conditions under which the operations are performed. A static analysis tool might:
(1) mark objects having been assigned to and have no knowledge of the conditions involved; (2) mark

June 16, 2005 v 1.0a 53

_ Introduction 9 Background to these coding guidelines

objects as assigned to when particular conditions hold, based on information available within the function
that contains their definition; (3) the same as (2) but based on information available from the complete
program.

9.8 Other coding guidelines documents

coding guidelines The writing of coding guideline documents is a remarkably common activity. Publicly available documents

other documents

discussing C inc|ud@23,531,576,640,698,729,876,905,906,1048,1049,1083,1087,1093,1219a’1ﬁﬁeihere are significantly
more documents internally available within companies. Such guideline documents are seen agbaihg a
thing to have. Unfortunately, few organizations invest the effort needed to write technically meaningful or
cost-effective guidelines, they then fail to make any investment in enforcingfem.

The following are some of the creators of coding guideline include:

« Software development compani&§! Your author’s experience with guideline documents written
by development companies is that at best they contain well-meaning platitudes and at worse consist
of a hodge-podge of narrow observations based on their authors’ experiences with another language

« Organizations, user groups and consortia that are users of soft&fel41 Here the aim is usually
to reduce costs for the organization, not software development companies. Coding guidelines are
rarely covered in any significant detail and the material usually forms a chapter of a much larger
document. Herrmarit?® provides a good review of the approaches to software safety and reliability
promoted by the transportation, aerospace, defense, nuclear power, and biomedical industries througl
their published guidelines.

« National and international standard®® Perceived authority is an important attribute of any guide-
lines document. Several user groups and consortia are actively involved in trying to have their docu-
ments adopted by national, if not international, standards bodies. The effort and very broad spectrum
of consensus needed for publication as an International Standard means that documents are likely t
be first adopted as National Standards.

The authors of some coding guideline documents see them as a way of making developers write gooc
programs (whatever they are). Your author takes the view that adherence to guidelines can only help prever
mistakes being made and reduce subsequent costs.

Most guideline recommendations specify subsets, not supersets, of the language they apply to. The terr
safe subseit sometimes used. Perhaps this approach is motivated by the idea that a language already ha
all the constructs it needs, the desire not to invent another language, or simply an unwillingness to invest
in the tools that would be needed to handle additional constructs (e.g., adding strong typing to a weakly
typed language). The guidelines in this book have been written as part of a commentary on the C Standarc
As such, they restrict themselves to constructs in that document and do not discuss recommendations th:
involve extensions.

Experience with more strongly typed languages suggests that strong typing does detect some kinds o
faults before program execution. Although experimental tool support for stronger type checking of C source
is starting to apped?3? 961 1166}jjttle experience in its use is available for study. This book does not specify
any guideline recommendations that require stronger type checking than that supported by the C Standard

Several coding guideline documents have been written fof2C- 543, 769,892-894,1004, 105} j5 interesting
to note that these coding guideline documents concentrate almost exclusively on the object-oriented feature
of C+ and those constructs not available in C. It is almost as if their authors believe that developers using
C+ will not make any of the mistakes that C developers make, despite one language almost being a superse
of the other.

Coding guideline documents for other languages include EdaCobol[*®°! Fortranl’#3 Prolog[?8®!
and SQL#07]

0-2f your author is told about the existence of coding guidelines while visiting a companies site, he always asks to see a copy; the
difficulty his hosts usually have in tracking down a copy is testament to the degree to which they are followed.

54 v 1.0a June 16, 2005

9 Background to these coding guidelines Introductm

9.8.1 Those that stand out from the crowd

The aims and methods used to produce coding guidelines documents vary. Many early guideline documents
concentrated on giving advice to developers about how to write efficientl&StH&he availability of pow-

erful processors, coupled with large quantities of source code, has changed the modern (since the 1980s)
emphasis to one of maintainability rather than efficiency. When efficiency is an issue, the differences be-
tween processors and compilers makes it difficult to give general recommendations. Vendors’ reference
manuals sometimes provide useful background adf#A&@®! The Object Defect ClassificatiBA? covers a

wide variety of cases and has been shown to give repeatable results when used by differeft’Beople.

9.8.1.1 Bell Laboratories and the 5ESS

Bell Laboratories undertook a root-cause analysis of faults in the software for their 5ESS SwitchingnBytsrements
tem 1428 The following were found to be the top three causes of faults, and their top two subcomponents:

1. Execution/oversight— 38%, which in turn was broken down into inadequate attention to details (75%)
and inadequate consideration to all relevant issues (11%).

2. Resource/planning— 19%, which in turn was broken down into not enough engineer time (76%) and
not enough internal support (4%).

3. Education/training— 15%, which in turn was broken down into area of technical responsibility (68%)
and programming language usage (15%).

In an attempt to reduce the number of faults, a set of “Code Fault Prevention Guidelines” and a “Coding
Fault Inspection Checklist” were written and hundreds of engineers were trained in their use. These guide-
line recommendations were derived from more than 600 faults found in a particular product. As such, they
could be said to be tuned to that product (nothing was said about how different root causes might evolve
over time).

Based on measurements of previous releases of the S5SESS software and engineering cost per house to
implement the guidelines (plus other bug inject countermeasures), it was estimated that for an investment
of US$100K, a saving of US$7 M was made in product rework and testing.

One of the interesting aspects of programs is that they can contain errors in logic and yet continue to
perform their designated function; that is, faults in the source do not always show up as a perceived fault by
the user of a program. Static analysis of code provides an estimate of the number of potential faults, but not
all of these will result in reported faults.

Why did the number of faults reported in the 5ESS software drop after the introduction of these guideline
recommendations? Was it because previous root causes were a good measure of future root-cause faults?

The guideline recommendations created do not involve complex constructs that required a deep knowl-
edge of C. They are essentially a list of mistakes made by developers who had incomplete knowledge of
C. The recommendations could be looked on as C language knowledge tuned to the reduction of faults in
a particular application program. The coding guideline authors took the approach that it is better to avoid a
problem area than expect developers to have detailed knowledge of the C language (and know how to deal
with problem areas).

In several places in the guideline document, it is pointed out that particular faults had costly consequences.
Although evidence that adherence to a particular set of coding guidelines would have prevented a costly fault
provides effective motivation for the use of those recommendations, this form of motivation (often seen in
coding guideline documents) is counter-productive when applied to individual guideline recommendations.
There is rarely any evidence to show that the reason for a particular coding error being more expensive that
another one is anything other than random chance.

9.8.1.2 MISRA

MISRA (Motor Industry Software Reliability Associatioaww.misra.org.uk) published a set oGuide- MISRA
lines for the use of the C language in Vehicle based softi#2r8%! These guideline recommendations

June 16, 2005 v 1.0a 55

_ Introduction 9 Background to these coding guidelines

Ada

coding guidelines
Ada o
using

ISO/IEC TR

were produced by a committee of interested volunteers and have become popular in several domains outsic
the automobile industry. For the most part, they are based on the implementation-defined, undefined, ant
unspecified constructs listed in Annex G of the C90 Standard. The guidelines relating to issues outside this
annex are not as well thought through (the technicalities of what is intended and the impact of following a
guideline recommendation).

There are now half a dozen tools’ vendors who offer products that claim to enforce compliance to the
MISRA guidelines. At the time of this writing these tools are not always consistent in their interpretation
of the wording of the guidelines. Being based on volunteer effort, MISRA does not have the resources
to produce a test suite or provide timely responses to questions concerning the interpretation of particular
guidelines.

9.8.2 Ada

Although the original purpose of the Ada language was to reduce total software ownership costs, its rigorous
type checking and handling of runtime errors subsequently made it, for many, the language of choice for
development of high-integrity systems. An ISO Technical Répdr(a TR does not have the status of a
standard) was produced to address this market.

The rationale given in many of tHeuidanceclauses of this TR is that of making it possible to perform
static analysis by recommending against the use of constructs that make such analysis difficult or impossible
to perform. Human factors are not explicitly mentioned, although this could be said to be the major issue in
some of the constructs discussed. Various methods are described as not being cost effective. The TR give
the impression that what it proposes is cost effective, although no such claim is made explicitly.

159422000 ..., it can be seen that there are four different reasons for needing or rejecting particular language features

software in-
spections
introduction

Reading
inspection
Reading 766
eye movement

within this context:

Language rules to achieve predictability,
Language rules to allow modelling,
Language rules to facilitate testing,
Pragmatic considerations.

S @ =

This TR also deals with the broader issues of verification techniques, code reviews, different forms of static
analysis, testing, and compiler validation. It recognizes that developers have different experience levels anc
sometimes (e.g., clause 5.10.3) recommends that some constructs only be used by experienced develope
(nothing is said about how experience might be measured).

9.9 Software inspections

Software inspections, technical reviews, program walk-throughs (whatever the name used), all involve peo
ple looking at source code with a view to improving it. Some of the guidelines in this book are specified for
enforcement during code reviews, primarily because automated tools have not yet achieved the sophistic:
tion needed to handle the constructs described.

Software inspections are often touted as a cost-effective method of reducing the number of defects in
programs. However, their cost effectiveness, compared to other methods, is starting to be questioned. For
survey of current methods and measurementsl/$8dor a detailed handbook on the subject, 8.

During inspections a significant amount of time is spent reading — reading requirements, design docu-
ments, and source code. The cost of, and likely mistakes made during, code reading are factors addresse
by some guideline recommendations. The following are different ways of reading source code, as it might
be applied during code reviews:

» Ad hoc reading techniquesThis is a catch-all term for those cases, very common in commercial
environments, where the software is simply given to developers. No support tools or guidance is

56 v 1.0a June 16, 2005

10 Applications Introduction m

given on how they should carry out the inspection, or what they should look for. This lack of support
means that the results are dependent on the skill, knowledge, and experience of the people at the
meeting.

Checklist reading. As its hame implies this reading technique compares source code constructs
against a list of issues. These issues could be collated from faults that have occurred in the past,
or published coding guidelines such as the ones appearing in this book. Readers are required to inter-
pret applicability of items on the checklist against each source code construct. This approach has the
advantage of giving the reader pointers on what to look for. One disadvantage is that it constrains the
reader to look for certain kinds of problems only.

Scenario-based readingike checklist reading, scenario-based reading provides custom guid&ce.
However, as well as providing a list of questions, a scenario also provides a description on how to
perform the review. Each scenario deals with the detection of the particular defects defined in the
custom guidance. The effectiveness of scenario-based reading techniques depends on the quality of
the scenarios.

 Perspective-based readinghis form of reading checks source code from the point of view of the
customers, or consumers, of a docuni&htThe rationale for this approach is that an application has
many different stakeholders, each with their own requirements. For instance, while everybody can
agree that software quality is important, reaching agreement on what the attributes of quality are can
be difficult (e.g., timely delivery, cost effective, correct, maintainable, testable). Scenarios are written,
for each perspective, listing activities and questions to ask. Experimental results on the effectiveness
of perspective-based reading of C source in a commercial environment are given by Laitenberger and
Jean-Marc DeBautd®!

» Defect-based readinddere different people focus on different defect classes. A scenario, consisting
of a set of questions to ask, is created for each defect class; for instance, invalid pointer dereferences
might be a class. Questions to ask could include; Has the lifetime of the object pointed to terminated?
Could a pointer have the null pointer value in this expression? Will the result of a pointer cast be
correctly aligned?

« Function-point reading. One stud{/® that compared checklist and perspective-based reading of
code, using professional developers in an industrial context, found that perspective-based reading had
a lower cost per defect found.

This book does not recommend any particular reading technique. It is hoped that the guideline recommen-
dations given here can be integrated into whatever method is chosen by an organization.

10 Applications

Several application issues can affect the kind of guideline recommendations that are considered to bgigjypiielines
cable. These include the application domain, the economics behind the usage, and how applications eviBRJg s
over time. These issues are discussed next.

The use of C as an intermediate language has led to support for constructs that simplify the job of
translation from other languages. Some of these constructs are specified in the standard (e.g., a trailing
comma in initializer lists), while others are provided as extensions gg¢s support for taking the addresgeinitialization
of labels and being able to specify tiregister storage class on objects’ declared with file scope, has
influenced the decision made by some translator implementors, of other languages to generate C rather than
machine codé3?)),

10.1 Impact of application domain

Does the application domain influence the characteristics of the source code? This question is important
because frequency of occurrence of constructs in source is one criterion used in selecting guideliné$'S®here
are certainly noticeable differences in language usage between some domains; for instance:

June 16, 2005 v 1.0a 57

_ Introduction 10 Applications

COCOMO o

development o
context

Usage o
1

software architec-
ture

« Floating point.Many applications make no use of any floating-point types, while some scientific and
engineering applications make heavy use of this data type.

« Large initializers. Many applications do not initialize objects with long lists of values, while the
device driver sources for the Linux kernel contain many long initializer lists.

There have been studies that looked at differences within different industries (e.g., banking, aerospace
chemicaf33). It is not clear to what extent the applications measured were unique to those industries (e.qg.,
some form of accounting applications will be common to all of them), or how representative the applications
measured might be to specific industries as a whole.

Given the problems associated with obtaining source code for the myriad of different application domains,
and the likely problems with separating out the effects of the domain from other influences, your author
decided to ignore this whole issue. A consequence of this decision is that these guideline recommendation
are a union of the possible issues that can occur across all application domains. Detailed knowledge of the
differences would be needed to build a set of guidelines that would be applicable to each application domain
Managers working within a particular application domain may want to select guidelines applicable to that
domain.

10.2 Application economics
Coding guidelines are applicable to applications of all sizes. However, there are economic issues associate
with the visible cost of enforcing guideline recommendations. For instance, the cost of enforcement is not
likely to be visible when writing new code (the incremental cost is hidden in the cost of writing the code).
However, the visible cost of ensuring that a large body of existing, previously unchecked, code can be
significant.

The cost/benefit of adhering to a particular guideline recommendation will be affected by the economic
circumstances within which the developed application sits. These circumstances include

» short/long expected lifetime of the application,
« relative cost of updating customers,
 quantity of source code,

¢ acceptable probability of application failure (adherence may not affect this probability, but often plays
well in any ensuing court case), and

¢ expected number of future changes/updates.

There are so many possible combinations that reliable estimates of the effects of these issues, on the app
cability of particular guidelines, can only be made by those involved in managing the development projects
(the COCOMO cost-estimation model uses 17 cost factors, 5 scale factors, a domain-specific factor, and :
count of the lines of code in estimating the cost of developing an application). The only direct economic
issues associated with guidelines, in this book, we discussed earlier and through the choice of application:
measured.

10.3 Software architecture

The termarchitectureis used in a variety of software development conté%t3he analogy with buildings
is often made, “firm foundations laying the base for . . . ”. This building analogy suggests a sense of

03some developers like to refer to themselves as software architects. In the UK such usage is against the law, “ . . . punishable by
fine not exceeding level 4 on the standard scale . . . ” (Architects Act 1997, Part IV):
Use of title “architect”.
20. — (1) A person shall not practise or carry on business under any name, style or title containing the word “architect” unless he
is a person registered under this Act.
(2) Subsection (1) does not prevent any use of the designation “naval architect”, “landscape architect” or “golf-course
architect”.

58 v 1.0a June 16, 2005

10 Applications Introduction m

direction and stability. Some applications do have these characteristics (in particular many of those studied
in early software engineering papers, which has led to the view that most applications are like this). Many
large government and institutional applications have this form (these applications are also the source of the
largest percentage of published application development research).

To remind readers, the primary aim of these coding guidelines is to minimize the cost of software owner-
ship. Does having a good architecture help achieve this aim? Is it possible to frame coding guidelines that
can help in the creation of good architecture? What is a good architecture?

What constitutes good software architecture is still being hotly debated. Perhaps it is not possible to
predict in advance what the best architecture for a given application is. However, experience shows that
in practice the customer can rarely specify exactly what it is they want in advance, and applications close
to what they require are obviously not close enough (or they would not be paying for a different one to
be written). Creating a good architecture, for a given application, requires knowledge of the whole and
designers who know how to put together the parts to make the whole. In practice applications are very likely
to change frequently; it might be claimed that applications only stop changing when they stop being used.
Experience has shown that it is almost impossible to predict the future direction of application changes.

The conclusion to be drawn, for these observations, is that there are reasons other than incompetence
for applications not to have any coherent architecture (although at the level of individual source files and
functions this need not apply). In a commercial environment, profitability is a much stronger motive than
the desire for coherent software architecture.

Software architecture, in the sense of organizing components into recognizable structures, is relevant
to reading and writing source in that developers’ minds also organize the information they hold. People
do not store information in long-term memory as unconnected facts. These coding guidelines asstiliftHat
having programs structured in a way that is compatible with how information is organized in developers’
minds, and having the associations between components of a program correspond to how developers make
associations between items of information, will reduce the cognitive effort of reading source code. Tl*fg‘:ﬁqwa'
architectural and organizational issues considered important by the guideline recommendations in this book
are those motivated by the characteristics of developers’ long-term memory storage and retrieval.

For a discussion of the pragmatics of software architecture, see Etbte.

10.3.1 Software evolution

Applications that continue to be used tend to be modified over time. Thestftmare evolutions some- application
times used to describe this process. Coding guidelines are intended to reduce the costs associated wift"i°"
modifying source. What lessons can be learned from existing applications that have evolved?

There have been several studies that looked at the change histories of some very large (several million
line *>? or a hundred millioF%®!) programs over many yeaf§?.514.9%7land significant growth over a few
yearsi*®?l Some studies have simply looked at the types of changes and their frequency. Others have tried
to correlate faults with the changes made. None have investigated the effect of source characteristics on the
effort needed to make the changes.

The one thing that is obvious from the data published to date: Researchers are still in the early stages of
working out which factors are associated with software evolution.

« A study®?ll at Bell Labs showed the efficiency gains that could be achieved using developers who
had experience with previous releases over developers new to a project. The results indicer{t?éwﬁﬁ%ém
developers who had worked on previous releases spent 20% of their time in project discovery Work.

This 20% was put down as the cost of working on software that was evolving (the costs were much

higher for developers not familiar with the project).

« Another Bell Labs stud§*® looked at predicting the risk of introducing a fault into an existing soft-
ware system while performing an update on it. They found that the main predictors were the number
of source lines affected, developer experience, time needed to make the change, and an attribute they

June 16, 2005 v 1.0a 59

_ Introduction 11 Developers

coupling and 1805
cohesion

coding guidelines
developers

psychol- o
ogy of pro-
gramming

Usage o

1
developer o
differences

developers
what do they
do?

cogni- o
tive effort
cognitive load o

reading 766
kinds of

calleddiffusion Diffusion was calculated from the number of subsystems, modules, and files modi-
fied during the change, plus the number of developers involved in the work. BP8valso tried to

predict faults in an evolving application. He found that the fault potential of a module correlated with

a weighted sum of the contributions from all the times the module had been changed (recent changes
having the most weight). Similar findings were obtained by OhI§§6187]

+ Lehman has written a number of pap&8 on what he calls thiaws of software evolutiorAlthough
they sound plausible, thet®vsare based on empirical findings from relatively few projects.

« Kemerer and Slaughté®! briefly review existing empirical studies and also describe the analysis of
25,000 change events in 23 commercial software systems (Cobol-based) over a 20-year period.

» Other studies have looked at the interaction of module coupling and cohesion with product evolution.

11 Developers

The remainder of this coding guidelines subsection has two parts. This first major subsection discusses
the tasks that developers perform, the second (the following major subsection) is a review of psychology
studies carried out in human characteristics of relevance to reading and writing source code. There is ar
academic research field that goes under the generahtitlesychology of programminfiew of the research
results from this field have been used in this book for reasons explained elsewhere. However, without being
able to make use of existing research applicable to commercial software development, your author has bee
forced into taking this two-part approach; which is far from ideal. A consequence of this approach is that
it is not possible to point at direct experimental evidence for some of the recommendations made in coding
guidelines. The most that can be claimed is that there is a possible causal link between specific researc
results, cognitive theories, and some software development activities.

Although these coding guidelines are aimed at a particular domain of software development, there is
no orientation toward developers having any particular kinds of mental attributes. It is hoped that this
discussion will act as a stimulus for research aimed at the needs of commercial software development
which cannot take place unless commercial software developers are willing to give up some of their time to
act as subjects (in studies). Itis hoped that this book will persuade readers of the importance of volunteering
to take part in this research.

11.1 What do developers do?

In this book, we are only interested in developer activities that involve source code. Most 8ftiflidise

time spent on these activities does not usually rise above 25%, of the total amount of time developers spen
on all activities. The non-source code-related activities, the other 75%, are outside the scope of this book
In this book, the reason for reading source code is taken to be that developers want to comprehend prograr
behavior sufficiently well to be able to make changes to it. Reading programs to learn about software
development, or for pleasure, are not of interest here.

The source that is eventually modified may be a small subset of the source that has been read. Developel
often spend a significant amount of their time working out what needs to be modified and the impact the
changes will have on existing cofé!]

The tools used by developers to help them search and comprehend source tend to be relatively unsophis
cated8% This general lack of tool usage needs to be taken into account in that some of the tasks performed
in amanuatcomprehension process will be different from those carried out in a tool-assisted process.

The following properties are taken to be important attributes of source code, because they affect develope
cognitive effort and load:

¢ Readable.Source is both scanned, looking for some construct, and read in a booklike fashion. The

symbols appearing in the visible source need to be arranged so that they can be easily seen, recognize
and processed.

60 v 1.0a June 16, 2005

11 Developers Introduction m

« ComprehensibleHaving read a sequence of symbols in the source, their meaning needs to be com-
prehended.

+ Memorable With applications that may consist of many thousands of line of source code (100 KLOC
is common), having developers continually rereading what they have previously read because they
have forgotten the information they learned is not cost effective. Cognitive psychology has"ﬁg’fg}f’@er
come up with a model of human memory that can be used to calculate the memorability of source
code. One practical approach might be to measure developer performance in reconstructing the source
of a translation unit (an idea initially proposed by Shneiderf&A, who proposed a 90-10 rule—
a competent developer should be able to reconstruct functionally 90% of a translation unit after 10
minutes of study).

« Unsurprising.Developers have expectations. Meeting those expectations reduces the need to remem-
ber special cases, and it reduces the possibility of faults caused by developers making assumptions
(not checking that their expectations are true).

For a discussion of the issues involved in collecting data on developers’ activities and some findings, see
Dewayné®3l and Bradad*®!

11.1.1 Program understanding, not

One of the first tasks a developer has to do when given source code is figure out what it does (the wodéleloper
understands often used by developers). What exactly does it mean to understanding a program? The Wgighension

understandingan be interpreted in several different ways; it could imply

» knowing all there is to know about a program. Internally (the source code and data structures) and
externally— its execution time behavior.

 knowing the external behavior of a program (or perhaps knowing the external behavior in a particular
environment), but having a limited knowledge of the internal behavior.

« knowing the internal details, but having a limited knowledge of the external behavior.

The concept ofinderstanding a prograns often treated as being a yes/no affair. In practice, a developer
will know more than nothing and less than everything about a program. Source code can be thought of as a
web of knowledge. By reading the source, developers acquire beliefs about it; these beliefs are influenced
by their existing beliefs. Existing beliefs (many might be considered to be knowledge rather than belpsfelmpinte-
the person holding them) can involve a programming language (the one the source is written in), general
computing algorithms, and the application domain.

When reading a piece of source code for the first time, a developer does not start with an empty set of
beliefs. Developers will have existing beliefs, which will affect the interpretation given to the source code
read. Developers learn about a program, a continuous process without a well-defined ending. This learning
process involves the creation of new beliefs and the modification of existing ones. Using aiteten- (
standing that implies a yes/no answer is not appropriate. Throughout this book, thedenprehensiois
used, nounderstanding

Program comprehension is not an end in itself. The purpose of the investment in acquiring this knowledge
(using the definition of knowledge as “belief plus complete conviction and conclusive justification”) is for
the developer to be in a position to be able predict the behavior of a program sufficiently well to be able to
change it. Program comprehension is not so much knowledge of the source code as the ability to predict
the effects of the constructs it contains (developers do have knowledge of the source code; for instance,
knowing which source file contains a declaration).

While this book does not directly get involved in theories of how people learn, program comprehen-
sion is a learning process. There are two main theories that attempt to explain learning. Empirical learn-
ing techniques look for similarities and differences between positive and negative examples of a concept.

June 16, 2005 v 1.0a 61

_ Introduction 11 Developers

Explanation-based learning techniques operate by generalizing from a single example, proving that the ex
ample is an instance of the concept. The proof is constructed by an inference process, making use of
domain theory, a set of facts, and logical implications. In explanation-based learning, generalizations retain
only those attributes of an example that are necessary to prove the example is an instance of the concej
Explanation-based learning is a general term for learning methods, such as knowledge compilation anc
chunking, that create new concepts that deductively follow from existing concepts. It has been argued that
a complete model of concept learning must have both an empirical and an explanation-based component.

What strategies do developers use when trying to build beliefs about (comprehend) a program? The
theories that have been proposed can be broadly grouped into the following:

« The top-down approachThe developer gaining a top-level understanding of what the program does.

Once this is understood, the developer moves down a level to try to understanding the components
that implement the top level. This process is repeated for every component at each level until the
lowest level is reached. A developer might chose to perform a depth-first or width-first analysis of
components.

» The bottom-up approachrlhis starts with small sequences of statements that build a description of

what they do. These descriptions are fitted together to form higher-level descriptions, and so on, until
a complete description of the program has been built.

« The opportunistic processors approachere developers use both strategies, depending on which

best suits the purpose of what they are trying to ach&Ve.

There have been a few empirical studies, using experienced (in the industrial sense) subjects, of how deve
opers comprehend code (the purely theoretically based models are not discussed here). Including:

62

« A study by Letovskif°! asked developers to talk aloud (their thoughts) as they went about the task of

adding a new feature to a program. He views developeka@sledge base understandersd builds
a much more thorough model than the one presented here.

« A study by Littman, Pinto, Letovsky and Solow#f! found two strategies in use by the developers

(minimum of five years’ experience) they observed: In a systematic strategy the developers seek to
obtain information about how the program behaves before modifying it; and in an as-needed strategy
developers tried to minimize the effort needed to study the program to be modified by attempting
to localize those parts of a program where the changes needed to be made. Littman et al. found tha
those developers using the systematic strategy outperformed those using the as-needed strategy for t
250-line program used in the experiment. They also noted the problems associated with attempting
to use the systematic strategy with much larger programs.

A study by Penningtdit?®! investigated the differences in comprehension strategies used by devel-
opers who achieved high and low levels of program comprehension. Those achieving high levels
of comprehension tended to think about both the application domain and the program (source code)
domain rather than just the program domain. Pennidf¥$halso studied mental representations of
programs; for small programs she found that professional programmers built models based on control
flow rather than data flow.

A study by von Mayrhauser and Vah$6 1367|ooked at experienced developers maintaining large,
40,000+ LOC applications and proposed an integrated code comprehension model. This model con
tained four major components, (1) program model, (2) situated model, (3) top-down model, and (4)
knowledge base.

« A study by Shaft and Vesséy?¥ gave professional programmer subjects source code from two dif-

ferent application domains (accounting and hydrology). The subjects were familiar with one of the
domains but not the other. Some of the subjects used a different comprehension strategy for the
different domains.

v 1.0a June 16, 2005

11 Developers Introduction m

11.1.1.1 Comprehension as relevance

Programming languages differ from human languages in that they are generally viewed, by developefggvance
as a means of one-way communication with a computer. Human languages have evolved for interactive
communication between two, or more, people who share common gfdund.

One of the reasons why developers sometimes find source code comprehension so difficult is that the
original authors did not write it in terms of a communication with another person. Consequently, many of
the implicit assumptions present in human communication may not be present in source code. Relevance is
a primary example. Sperber and Wil§8#! list the following principles of human communication:

Sperber and Wil-

Principle of relevance sorf1216]

1. Every act of ostensive communication communicates a presumption of its own optimal relevance.
Presumption of optimal relevance

1. The set of assumptiomsvhich the communicator intends to make manifest to the addressee is relevant
enough to make it worth the addressee’s while to process the ostensive stimulus.

2. The ostensive stimulus is the most relevant one the communicator could have used to comimunicate

A computer simply executes the sequence of instructions contained in a program image. It has no”&ﬁ;[&%[gb-
tion of application assumptions and relevance. The developer knows this and realizes that including such
information in the code is not necessary. A common mistake made by novice developers is to assume that
the computer is aware of their intent and will perform the appropriate operations. Teaching developers to
write code such that can be comprehended by two very different addressee’s is outside the scope of these
coding guidelines.

Source code contains lots of details that are relevant to the computer, but often of little relevance to a
developer reading it. Patterns in source code can be used as indicators of relevance; recognizing these
patterns is something that developers learn with experience. These coding guidelines do not discuss the
teaching of such recognition.

Developers often talk of thmtended meaningf source code, i.e., the meaning that the original author
of the code intended to convey. Code comprehension being an exercise in obtaining an intended meaning
that is assumed to exist. However, the only warranted assumption that can be made about source code is
that the operations specified in it contribute to a meaning.

11.1.2 The act of writing software

The model of developers sitting down to design and then write software on paper, iterating through several
versions before deciding their work is correct, then typing it into a computer is still talked about today. This
method of working may have been necessary in the past because access to computer terminals was often
limited and developers used paper implementations as a method of optimizing the resources available to
them (time with, and without, access to a computer).

Much modern software writing is done sitting at a terminal, within an editor. Often no written, paper
notes are used. Everything exists either in the developer’'s head or on the screen in front of him (or her).
However, it is not the intent of this book to suggest alternative working practices. Changing a system that
panders to people’s needs for short-term gratificdfi®thto one that delays gratification and requires more
intensive periods of a difficult, painful activity (thinking) is well beyond your author’s capabilities.

Adhering to guideline recommendation does not guarantee that high quality software will be written; it
can only help reduce the cost of ownership of the software that is written.

04The study of meaning and communication between people often starts with Grices rf*4%irbst readers might find Sperber
and Wilso'218] easier going.

June 16, 2005 v 1.0a 63

_ Introduction 12 The new(ish) science of people

ROl o

Alfred North
Whitehead

These coding guidelines assume that the cost of writing software is significantly less than the cost of
developer activities that occur later (testing, rereading, and modification by other developers). Adhering
to guideline may increase the cost of writing software. The purpose of this investment is to make savings
(which are greater than the costs by an amount proportional to the risk of the investment) in the cost of these
later activities.

It is hoped that developers will become sufficiently fluent in using these guideline recommendations
and that they will be followed automatically while entering code. A skilled developer should aim to be
able to automatically perform as much of the code-writing process as possible. Performing these tasks
automatically frees up cognitive resources for use on other problems associated with code development.

It is a profoundly erroneous truism . . . that we should cultivate the habit of thinking of what we are doing. The

(1861-1947) precise opposite is the case. Civilization advances by extending the number of important operations which we

developer o
flow

productivity
developer

expertise o

can perform without thinking about them.

It is not suggested that the entire software development process take place without any thinking. The
process of writing code can be compared to writing in longhand. The writer thinks of a sentence and his
hand automatically writes the words. It is only schoolchildren who need to concentrate on the actual process
of writing the words.

11.2 Productivity

Although much talked about, there has been little research on individual developer productivity. There is the
often quoted figure of a 25-to-1 productivity difference between developers; however, this is a misinterpreta-
tion of figures presented in two tables of a particular p&8&rHopefully the analysis by Prech@&f® will

finally put a stop to researchers quoting this large, incorrect, figure. The differences in performance found
by Prechelt are rarely larger than four, similar to the performance ranges found by the original research.

Few measurement programs based on individual developers have been undertaken; many measures &
based on complete projects, dividing some quantity (often lines of code) by the number of individuals work-
ing on them. See Scactf”! for a review of the empirical software productivity research and J&ties
provides a good discussion of productivity over the complete life cycle of a project. However, some of the
issues discussed (e.g., response time when editing source) are rooted in a mainframe environment and a
no longer relevant.

Are there any guideline recommendations that the more productive developers use that we can all learr
from? Your author knows of no published research that investigates productivity at this level of detail. Age-
related productivity issu€é® 1198l gre not discussed in these coding guidelines. The subject of expertise is
discussed elsewhere.

12 The new(ish) science of people

Itis likely that the formal education of this book’s readership will predominantly have been based on the so-
calledhard sciencesThe wordhard being used in the sense of having theories backed by solid experimental
results, which are repeatable and have been repeated many times. These sciences, and many engineer
disciplines, have also been studied experimentally for a long period of time. The controversies surrounding
the basic theory, taught to undergraduates, have been worked through.

Psychology has none of those advantages. There are often unseen, complex interactions going on insic
the object being studied (people’s responses to questions and problems). Because of this, studies usin
slightly different experimental situations can obtain very different results. The field is also relatively new,
and the basic theory is still being argued over. Consequently, this book cannot provide a definitive account
of the underlying theories relating to the subject of immediate interest here— reading and writing source
code.

The results of studies, and theories, from psychology are starting to become more widely applied in other
fields. For instance, economists are starting to realize that people do not always make rational d&¢fions.
Researchers are also looking at the psychology of programming.

64 v 1.0a June 16, 2005

12 The new(ish) science of people Introductm

The subfield of psychology that is of most relevance to this book is cognitive psychology. The goal ofcognitive
cognitive psychology is to understand the nature of human intelligence and how it works. Other subfieffécholooy
include clinical psychology (understanding why certain thought malfunctions occur) and social psychology
(how people behave in groups or with other individu&fs).

12.1 Brief history of cognitive psychology

Topics of interest to cognitive psychology were discussed by the Greeks as part of their philosophical think-
ing. This connection with philosophy continued through the works of Descartes, Kant, Mill, and others.
In 1879, Wilhelm Wundt established the first psychology laboratory in Germany; this date is considered to
mark the start of psychology as an independent field. Wundt believed that the workings of the mind were
open to self-observation. The method involved introspection by trained observers under controlled condi-
tions. Unfortunately, different researchers obtained different results from these introspection experiments,
so the theory lost creditability.

During the 1920s, John Watson and others developed the theory kndethasiorism This theory was
based on the idea that psychology should be based on external behavior, not on any internal workings of the
mind. The theory is best known through its use of rats in various studies. Although widely accepted in the
US for a long time, behaviorism was not so dominant in Europe, where other theories were also developed.

Measurements on human performance were given a large boost by World War Il. The introduction of
technology, such as radar, required people to operate it. Information about how people were best trained to
use complex equipment, and how they could best maintain their attention on the job at hand, was needed.

Cognitive psychology grew into its current form through work carried out between 1950 and 1970. The
inner workings of the mind were center stage again. The invention of the computer created a device, the
operation of which was seen as a potential parallel for the human mind. Information theory as a way of
processing information started to be used by psychologists. Another influence was linguistics, in particular
Noam Chomsky’s theories for analyzing the structure of language. The information-processing approach to
cognitive psychology is based on carrying out experiments that measured human performance and building
models that explained the results. It does not concern itself with actual processes within the brain, or parts
of the brain, that might perform these functions.

Since the 1970s, researchers have been trying to create theories that explain human cognition in terms
of how the brain operates. These theories are knoweogaitive architecturesThe availability of brain
scanners (which enable the flow of blood through the brain to be monitored, equating blood flow to activity)
in the 1990s has created the research area of cognitive neuroscience, which looks at brain structure and
processes.

12.2 Evolutionary psychology

Human cognitive processes are part of the survival package that constitutes a human being. The cognitéu@onary
processes we have today exist because they increased (or at least did not decrease) the likelihood ofS§tiP'°%Y
ancestors passing on their genes thorough offspring. Exactly what edge these cognitive processes gave our
ancestors, over those who did not possess them, is a new and growing area of research &nolutiasary
psychology To quote one of the founders of the fiéidf!

i |
Evolutionary psychology is an approach to psychology, in which knowledge and principles from evolution%ﬁf/mde878

biology are put to use in research on the structure of the human mind. It is not an area of study, like vision,
reasoning, or social behavior. It is a way of thinking about psychology that can be applied to any topic within
it.

... all normal human minds reliably develop a standard collection of reasoning and regulatory circuits that
are functionally specialized and, frequently, domain-specific. These circuits organize the way we interpret
our experiences, inject certain recurrent concepts and motivations into our mental life, and provide universal

05For a good introduction to the subject covering many of the issues discussed here, se@agjitiive Psychology: A Student’s
Handbookby Eysenck and Keaf&2 or Cognitive Psychology and its Implicatiobg Andersori33]

June 16, 2005 v 1.0a 65

_ Introduction 12 The new(ish) science of people

conjunc- o
tion fallacy

Cosmide&™

experimental
studies

frames of meaning that allow us to understand the actions and intentions of others. Beneath the level of surface
variability, all humans share certain views and assumptions about the nature of the world and human action
by virtue of these human universal reasoning circuits.

These functionally specialized circuits (the theory often goes by the namemitsgve modularity hypoth-

esig work together well enough to give the impression of a powerful, general purpose processor at work.
Because they are specialized to perform a given task when presented with a problem that does not hav
the expected form (the use of probabilities rather than frequency counts in the conjunction fallacy) perfor-
mance is degraded (peoples behavior appears incompetent, or even irrational, if presented with a reasonir
problem). The following are the basic principles:

Principle 1. The brain is a physical system. It functions as a computer. Its circuits are designed to generate
behavior that is appropriate to your environmental circumstances.

Principle 2. Our neural circuits were designed by natural selection to solve problems that our ancestors faced
during our species’ evolutionary history.

Principle 3. Consciousness is just the tip of the iceberg; most of what goes on in your mind is hidden from
you. As a result, your conscious experience can mislead you into thinking that our circuitry is simpler than

it really is. Most problems that you experience as easy to solve are very difficult to solve— they require very
complicated neural circuitry.

Principle 4. Different neural circuits are specialized for solving different adaptive problems.

Principle 5. Our modern skulls house a stone age mind.

Although this field is very new and has yet to establish a substantial body of experimental results and theory
it is referred to throughout these coding guidelines. The standard reference is Barkow, Cosmides, anc
Tooby®U (Mithen®8! provides a less-technical introduction).

12.3 Experimental studies

Much of the research carried out in cognitive psychology has used people between the ages of 18 and 2:
studying some form of psychology degree, as their subjects. There has been discussion by psycholog
researchers on the extent to which these results can be extended to the general P8putimeever,

here we are interested in the extent to which the results obtained using such subjects is applicable to hov
developers behave?

Given that people find learning to program difficult, and there is such a high failure rate for programming
courseB3 it is likely that some kind of ability factors are involved. However, because of the lack of
studies investigating this issue, it is not yet possible to know what these programming ability factors might
be. There are a large number of developers who did not study for some form of a computing degree at
university, so the fact that experimental subjects are often students taking other kinds of courses is unlikely
to be an issue.

12.3.1 The importance of experiments
The theories put forward by the established sciences are based on experimental results. Being elegant is n
sufficient for a theory to be accepted; it has to be backed by experiments.

Software engineering abounds with theories and elegance is often cited as an important attribute. How
ever, experimental results for these theories are often very thin on the ground. The computing field is
evolving so rapidly that researchers do not seem willing to invest significant amounts of their time gather-
ing experimental data when there is a high probability that many of the base factors may have completely
changed by the time the results are published.

Replication is another important aspect of scientific research; others should be able to duplicate the result
obtained in the original experiment. Replication of experiments within software research is relatively rare;
possible reasons include

66 v 1.0a June 16, 2005

12 The new(ish) science of people Introductm

« the pace of developments in computing means that there are often more incentives for trying new
ideas rather than repeating experiments to verify the ideas of others,

« the cost of performing an experiment can be sufficiently high that the benefit of replication is seen as
marginal, and/or

« the nature of experiments involving large-scale, commercial projects are very difficult to replicate.
Source code can be duplicated perfectly, so there is no need to rewrite the same software again.

A good practical example of the benefits of replication and the dangers of not doing any is given by
Brooks!*®8l Another important issue is the statistical power of experiméfs.

Experiments that fail can be as important as those that succeed. Nearly all published, computing-related
papers describe successes. The benefits of publishing negative results (i.e., ideas that did not work) has been
proposed by PrechekQ®e]

12.4 The psychology of programming

Studies on the psychology of programming have taken their lead from trends in both psychology andps@fisiogy of
ware engineering. In the 1960s and 1970s, studies attempted to measure performance times for vAR8ES™"9
tasks. Since then researchers have tried to build models of how people carry out the tasks involved with
various aspects of programming.

Several theories about how developers go about the task of comprehending source code have been pro-
posed. There have also been specific proposals about how to reduce developer error rates, or to improve
developer performance. Unfortunately, the experimental evidence for these theories and proposals is either
based on the use of inexperienced subjects or does not include sufficient data to enable statistically signifi-
cant conclusions to be drawn. A more detailed, critical analysis of the psychological study of programming
is given by Sheitt69 (the situation does not seem to have changed since this paper was written 20 years
ago).

Several studies have investigated how novices write software. This is both an area of research interest
and of practical use in a teaching environment. The subjects taking part in these studies also have the
characteristics of the population under investigation (i.e., predominantly students). However, this book is
aimed at developers who have several years’ experience writing code; it is not aimed at novices and it does
not teach programming skills.

Lethbridge, Sim, and Sing€?®! discuss some of the techniques used to perform field studies of software
companies.

12.4.1 Student subjects
Although cognitive psychology studies use university students as their subjects there is an important char-
acteristic they generally have, for these studies, that they don’t have for software developmenttiidies.

That characteristic is experience— that is, years of practice performing the kinds of actions (e.g., reading
text, making decisions, creating categories, reacting to inputs) they are asked to carry out in the studies.
However, students, typically, have very little experience of writing software, perhaps 50 to 150 hours. Com-
mercial software developers are likely to have between 1,000 to 10,000 hours of experience. A study by
Moher and Schneid€t6! compared the performance of students and professional developers in program
comprehension tasks. The results showed that experience was a significant factor (greater than the aptitude
measures made) in performance.

Reading and writing software is a learned skill. Any experiments that involve a skill-based performance
need to take into account the subjects’ skill level. The coding guidelines in this book are aimed at developers
in a commercial environment where it is expected that they will have at least two years’ experience in
software development.

Use of very inexperienced developers as subjects in studies means that there is often a strong learning
effect in the results. Student subjects taking part in an experiment often get better at the task because they
are learning as they perform it. Experienced developers have already acquired the skill in the task being

June 16, 2005 v 1.0a 67

_ Introduction 12 The new(ish) science of people

measured, so there is unlikely to be any significant learning during the experiment. An interesting insight
into the differences between experiments involving students and professional developers is provided by &
study performed by BasifP! and a replication of it by Ciolkowsk?3!

A note on differences in terminology needs to be made here. Many studies in the psychology of program-
ming use the phrasexpertto apply to a subject who is a third-year undergraduate or a graduate student (the
termnovicebeing applied to first-year undergraduates). In a commercial software development environment
a recent graduate is considered to brgicedeveloper. Somebody with five or more years of commercial
development experience might know enough to be callezkpert

12.4.2 Other experimental issues

When an experiment is performed, it is necessary to control all variables except the one being measured. |
is also necessary to be able to perform the experiments in a reasonable amount of time. Most commercia
programs contain thousands of lines of source code. Nontrivial programs of this size can contain any numbe
of constructs that could affect the results of an experiment; they would also require a significant amount of
effort to read and comprehend. Many experiments use programs containing less than 100 lines of source
In many cases, it is difficult to see how results obtained using small programs will apply to much larger
programs.

The power of the statistical methods used to analyze experimental data depends on the number of differer
measurements made. If there are few measurements, the statistical significance of any claim’s results will be
small. Because of time constraints many experiments use a small number of different programs, sometime
a single program. All that can be said for any results obtained for a single program is that the results apply
to that program; there is no evidence of generalization to any other programs.

Is the computer language used in experiments significant? The extent to which the natural language
spoken by a person, affects their thinking has been debated since Boas, Sapir, and Whorf developed th

weinguage 77 |inguistic relativity hypothesi€*”). In this book, we are interested in C, a member of the procedural com-
puter language family. More than 99.9% of the software ever written belongs to languages in this family.
However, almost as many experiments seem to use nonprocedural languages, as procedural ones. Whett
the language family of the experiment affects the applicability of the results to other language families is
unknown. However, it will have an effect on the degree of believability given to these results by developers
working in a commercial environment.

12.5 What question is being answered?

Many of the studies carried out by psychologists implicitly include a human language (often English) as
part of the experiment. Unless the experiments are carefully constructed, unexpected side-effects may b
encountered. These can occur because of the ambiguous nature of words in human language, or because
subjects expectations based on their experience of the nature of human communication.

The following three subsections describe famous studies, which are often quoted in introductory cognitive
psychology textbooks. Over time, these experiments have been repeated in various, different ways and th
underlying assumptions made by the original researchers has been challenged. The lesson to be learned fro
these studies is that it can be very difficult to interpret a subject’s answer to what appears to be a simple
question. Subjects simply may not have the intellectual machinery designed to answer the question in the
fashion itis phrased (base rate neglect), they may be answering a completely different question (conjunctior
fallacy), or they may be using a completely unexpected method to solve a problem (availability heuristic).

12.5.1 Base rate neglect
base rate neglect Given specific evidence, possible solutions to a problem can be ordered by the degree to which they are
fepresen@ o representative of that evidence (i.e., their probability of occurring as the actual solution, based on past
experience). While these representative solutions may appear to be more likely to be correct than less
representative solutions, for particular cases they may in fact be less likely to be the solution. Other factors
such as the prior probability of the solution, and the reliability of the evidence can affect the probability of
any solution being correct.

68 v 1.0a June 16, 2005

12 The new(ish) science of people Introductm

A series of studies, Kahneman and Tvel#y) suggested that subjects often seriously undervalue the
importance of prior probabilities (i.e., they neglected base-rates). The following is an example from one of
these studies. Subjects were divided into two groups, with one group of subjects being presented with the
following cover story:

A panel of psychologists have interviewed and administered personality tests to 30 engineers and
70 lawyers, all successful in their respective fields. On the basis of this information, thumbnail de-
scriptions of the 30 engineers and 70 lawyers have been written. You will find on your forms five
descriptions, chosen at random from the 100 available descriptions. For each description, please indi-
cate your probability that the person described is an engineer, on a scale from 0 to 100.

and the other group of subjects presented with identical cover story, except the prior probabilities were
reversed (i.e., they were told that the personality tests had been administered to 70 engineers and 30 lawyers).
Some of the descriptions provided were designed to be compatible with the subjects’ stereotype of engineers,
others were designed to be compatible with the stereotypes of lawyers, and one description was intended to
be neutral. The following are two of the descriptions used.

Jack is a 45-year-old man. He is married and has four children. He is generally conservative, ¢areful
and ambitious. He shows no interest in political and social issues and spends most of his free time on
his many hobbies which include home carpentry, sailing, and mathematical puzzles.

The probability that Jack is one of the 30 engineers in the sample of 100is ___ %.

Dick is a 30-year-old man. He is married with no children. A man of high ability and high motivation,
he promises to be quite successful in his field. He is well liked by his colleagues.
The probability that Dick is one of the 70 lawyers in the sample of 100 is %.

Following the five descriptions was this null description.

Suppose now that you are given no information whatsoever about an individual chosen at random
from the sample.

The probability that this man is one of the 30 engineers in the sample of 100 is %.

In both groups, half of the subjects were asked to evaluate, for each description, if the person described
was an engineer. The other subjects were asked the same question, except they were asked about lawyers.

The probability of a person being classified as an engineer, or lawyer, can be calculated using Bayes’
theorem. Assume that, after reading the description, the estimated probability of that person being an
engineer isP. The information that there are 30 engineers and 70 lawyers in the sample allows us to modify
the estimateP, to obtain a more accurate estimate (using all the information available to us). The updated
probability is0.3P/(0.3P + 0.7(1 — P)). If we are told that there are 70 engineers and 30 lawyers, the
updated probability i8.7P/(0.7P+0.3(1— P)). For different values of the estimalg we can plot a graph
using the two updated probabilities as thandy coordinates. If information on the number of engineers
and lawyers is not available, or ignored, the graph is a straight line (see Figure 0.10).

The results (see Figure 0.10) were closer to the straight line than the Bayesian line. The conclusion
drawn was that information on the actual number of engineers and lawyers in the sample (the base-rate) had
minimal impact on the subjective probability chosen by subjects.

June 16, 2005 v 1.0a 69

_ Introduction

12 The new(ish) science of people

conjunction fal-
lacy

5 100 — Z
Z
= X/
3 7
> - s
B ,
N /
- s
5]
1 s
g /
2 X
o /
L — X
°© /
2 7
= s
‘5 20— ’
E s
) /
= : T T
20 60 100

Probability of engineer (given 30)

Figure 0.10: Median judged probability of subjects choosing an engineer, for five descriptions and for the null description
(unfilled circle symbol). Adapted from Kahnem&A!

Later studie%?8l found that peoples behavior when making decisions that included a base-rate component
was complex. Use of base-rate information was found to depend on how problems and the given information
was framed (large between study differences in subject performance were also seen). For instance, in son
cases subjects were found to use their own experiences to judge the likelihood of certain events occurring
rather than the probabilities given to them in the studies. In some cases the ecological validity of using
Bayes’ theorem to calculate the probabilities of outcomes has been questioned.

To summarize: while people have been found to ignore base-rates when making some decisions, thi:
behavior is far from being universally applied to all decisions.

12.5.2 The conjunction fallacy

An experiment originally performed by Tversky and KahneR## presented subjects with the following
problem.

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Please rank the following statements by their probability, using 1 for the most probable and 8 fpr the
least probable.

(a) Linda is a teacher in elementary school.

(b) Linda works in a bookstore and takes Yoga classes.

(c) Linda is active in the feminist movement.

(d) Linda is a psychiatric social worker.

(e) Linda is a member of the League of Women \oters.

() Linda is a bank teller.

(9) Linda is an insurance sales person.

(h) Linda is a bank teller and is active in the feminist movement.

In a group of subjects with no background in probability or statistics, 89% judged that statement (h) was
more probable than statement (f). Use of simple mathematical logic shows that Linda cannot be a feminist
bank teller unless she is also a bank teller, implying that being only a bank teller is at least as likely, if
not more so, than being both a bank teller and having some additional attribute. When the subjects were
graduate students in the decision science program of the Stanford Business School (labeled as statistical
sophisticated by the experimenters), 85% judged that statement (h) was more probable than statement (f).

70 v 1.0a June 16, 2005

12 The new(ish) science of people Introductm

These results (a compound event being judged more probable than one of its components) have been
duplicated by other researchers performing different experiments. A recent series of'$fiftlie=nt as far
as checking subjects’ understanding of the warabability and whether statement (f) might be interpreted
to mearLinda is a bank teller and not active in the feminist moven(igmas not).

This pattern of reasoning has become knowthasconjunction fallacy

On the surface many of the subjects in the experiment appear to be reasoning in a nonrational way.
How can the probability of the eveit and Bbe greater than the probability of evel® However, further
studies have found that the likelihood of obtaining different answers can be affected by how the problem is
expressed. The effects of phrasing the problem in terms of gitbeability or frequencywere highlighted
in a study by Fiedlet® The original Tversky and Kahneman study wording was changed to the following:

There are 100 people who fit the description above. How many of them are:
(a) bank tellers?
(b) bank tellers and active in the feminist movement?

In this case, only 22% of subjects rated thenk teller and active in the feminist movemeption as
being more frequent than thxank telleronly option. When Fiedler repeated the experiment using wording
identical to the original Tversky and Kahneman experiment, 91% of subjects gave the feminist bank teller
option as more probable than the bank teller only option. A number of different explanations, for the
dependence of the conjunction fallacy on the wording of the problem, have been proposed.

Evolutionary psychologists have interpreted these results as showing that people are not very°§§§f§@(f
reasoning using probability. It is argued that, in our daily lives, events are measured in terms of their fre-
guency of occurrence (e.g., how many times fish were available at a particular location in the river). This
event-based measurement includes quantity, information not available when probabilities are used. Follow-
ing this argument through suggests that the human brain has become specialized to work with frequency
information, not probability information.

Hertwig and Gigerenz®PY point out that, in the Linda problem, subjects were not informed that they conjunc-
were taking part in an exercise in probability. Subjects therefore had to interpret the instructions; in ng&;‘i‘f‘iﬁ
ticular, what did the experimenter mean pxobability? Based on Grice®?! theory of conversational terpretation
reasoning, they suggested that the likely interpretation given to the prolzhbility would be along therelevance
lines of “something which, judged by present evidence, is likely to be true, to exist, or to happen,” (one of
the Oxford English dictionary contemporary definitions of the word), not the mathematical definition of the
word.

Grice’s theory was used to make the following predictions:

: [551]
Prediction 1: Probability judgments. If asked for probability judgments, people will infer its nonmathematié?ﬂm""g{
meanings, and the proportion of conjunction violations will be high as a result.

Prediction 2: Frequency judgments. If asked for frequency judgments, people will infer mathematical meanings,
and the proportion of conjunction violations will decrease as a result.

Prediction 3: Believability judgments. If the term “probability” is replaced by “believability”, then the propor-
tion of conjunction violations should be about as prevalent as in the probability judgment.

A series of experiments confirmed these predictions. A small change in wording caused subjects to have a
completely different interpretation of the question.

12.5.3 Availability heuristic

How do people estimate the likelihood of an occurrence of an event? The availability heuristic argues tl’_ltaz%yailabti_l—
ity heuristic

June 16, 2005 v 1.0a 71

_ Introduction 12 The new(ish) science of people

in making an estimate, people bring to mind instances of the event; the more instances brought to mind, the
more likely it is to occur. Tversky and Kahnenks#3! performed several studies in an attempt to verify that
people use this heuristic to estimate probabilities. Two of the more well-known experiments follow.

The first is judgment of word frequency; here subjects are first told that.

The frequency of appearance of letters in the English language was studied. A typical text was
selected, and the relative frequency with which various letters of the alphabet appeared in the first and
third positions in words was recorded. Words of less than three letters were excluded from the count.

You will be given several letters of the alphabet, and you will be asked to judge whether these |etters
appear more often in the first or in the third position, and to estimate the ratio of the frequency with
which they appear in these positions.

They were then asked the same question five times, using each of the letters (K, L, N, R, V).

Consider the letter R.
Is R more likely to appear in:

* the first position?
« the third position? (check one)

My estimate for the ratio of these two valuesis ___ :1.

Of the 152 subjects, 105 judged the first position to be more likely (47 the third position more likely).
The median estimated ratio was 2:1.

In practice, words containing the lettrin the third position occur more frequently in texts than words
with Rin the first position. This is true for all the lettersiz L, N, R, V.

The explanation given for these results was that subjects could more easily recall words beginning with
the letterR, for instance, than recall words having Rras the third letter. The answers given, being driven
by the availability of instances that popped into the subjects’ heads, not by subjects systematically counting
all the words they knew.

An alternative explanation of how subjects might have reached their conclusion was proposed by SedIimei
Hertwig, and Gigerenzét!® First they investigated possible ways in which the availability heuristic
might operate; Was it based on availability-by-number (the number of instances that could be recalled)
or availability-by-speed (the speed with which instances can be recalled). Subjects were told (the following
is an English translation, the experiment took place in Germany and used German students) either:

Your task is to recall as many words as you can in a certain time. At the top of the following page
you will see a letter. Write down as many words as possible that have this letter as the first (second)
letter.

or,

Your task is to recall as quickly as possible one word that has a particular letter as the first (second)
letter. You will hear first the position of the letter and then the letter. From the moment you hear the
letter, try to recall a respective word and verbalize this word.

72 v 1.0a June 16, 2005

13 Categorization Introduction m

Subjects answers were used to calculate an estimate of relative word frequency based on either availability-
by-number or on availability-by-speed. These relative frequencies did not correlate with actual frequency
of occurrence of words in German. The conclusion drawn was that the availability heuristic was not an ac-
curate estimator of word frequency, and that it could not be used to explain the results obtained by Tversky
and Kahneman.

If subjects were not using either of these availability heuristics, what mechanism are they using? Jonides
and Jone8%8] have shown, based on a large body of results, that subjects are able to judge the number of
many kinds of events in a way that reflects the actual relative frequencies of the events with some accuracy.

Sedimeier et dt'%8! proposed (what they called thegressed-frequencies hypothédisat (a) the fre-
guencies with which individual letters occur at different positions in words are monitored (by people while
reading), and (b) the letter frequencies represented in the mind are regressed toward the mean of all letter
frequencies. This is a phenomenon often encountered in frequency judgment tasks, where low frequencies
tend to be overestimated and high frequencies underestimated; although this bias affects the accuracy of the
absolute size of frequency judgments, it does not affect their rank order. Thus, when asked for the relative
frequency of a particular letter, subjects should be expected to give judgments of relative letter frequen-
cies that reflect the actual ones, although they will overestimate relative frequencies below the mean and
underestimate those above the mean — a simple regressed-frequency heuristic. The studies performed by
SedIimeier et al. consistently showed subjects’ judgments conforming best to the predictions of the regressed-
frequencies hypothesis.

While it is too soon to tell if the regressed-frequencies hypothesis is the actual mechanism used by
subjects, it does offer a better fit to experimental results than the availability heuristic.

13 Categorization
Children as young as four have been found to use categorization to direct the inferences thé§*haaiak, categorization
many different studies have shown that people have an innate desire to create and use categories (they have
also been found to be sensitive to the costs and benefits of using caté{ByieBy dividing items in the
world into categories of things, people reduce the amount of information they need #&°féHoy building
an indexed data structure that will enable them to lookup information on specific items they may not have
encountered before (by assigning that item to one or more categories and extracting information common
to items in those categories). For instance, a flying object with feathers and a beak might be assigned to the
categonybird, which suggests the information that it lays eggs and may be migratory.

Source code is replete with examples of categories; similar functions are grouped together in the same
source file, objects belonging to a particular category are defined as members of the same strucf@?&?ﬁ'ﬁe,
and enumerated types are defined to represent a common set of symbolic names. s27struicture type

sequentially

People seem to have an innate desire to create categories (people have been found to expect, range
sequences to have certain attribuf€d,e.qg., frequent alternation between different values, which framga=q ation
mathematical perspective represent regularity). There is the danger that developers, reading a préﬁ% §is’
source code will create categories that the original author was not aware existedn@Weagegories maflﬂﬁamgo"c
represent insights into the workings of a program, or they may be completely spurious (and a source of
subsequent incorrect assumptions, leading to faults being introduced).

Categories can be used in many thought processes without requiring significant cognitive effort (a built-
in operation). For instance, categorization can be used to perform inductive reasoning (the derivation of
generalized knowledge from specific instances), and to act as a memory aid (remembering the members of
a category). There is a limit on the cognitive effort that developers have available to be used and making use
of a powerful ability, which does not require a lot of effort, helps optimize the use of available resources.

There have been a number of stuéligd! looking at how people use so-calledtural categoriegi.e.,
those occurring in nature such as mammals, horses, cats, and birds) to make inductive judgments. Peo-
ple’s use of categorical-based arguments (i.e., “Grizzly bears love onions.” and “Polar bears love onions.”
therefore “All bears love onions.”) have also been studigld.

Source code differs from nature in that it is created by people who have control over how it is organized.

June 16, 2005 v 1.0a 73

_ Introduction 13 Categorization

Recognizing that people have an innate ability to create and use categories, there is a benefit in trying tc
maximize positive use (developers being able to infer probable behaviors and source code usage based ¢
knowing small amounts of information) of this ability and to minimize negative use (creating unintended
categories, or making inapplicable inductive judgments).

Source code can be organized in a myriad of ways. The problem is finding the optimal organization,
which first requires knowing what needs to be optimized. For instance, | might decide to split some functions
I have written that manipulate matrices and strings into two separate source files. | could decide that the
functions | wrote first will go in the first file and those that | wrote later in the second file, or perhaps the
first file will contain those functions used on project X and the second file those functions used on project
Y. To an outside observer, a manatural organization might be to place the matrix-manipulation functions
in the first file and the string-manipulation functions in the second file.

In a project that grows over time, functions may be placed in source files on an as-written basis; a main-
tenance process that seeks to minimize disruption to existing code will keep this organization. When two
separate projects are merged into one, a maintenance process that seeks to minimize disruption to existir
code is unlikely to reorganize source file contents based on the data type being manipulated. This categc
rization process, based on past events, is a major factor in the difficulty developers have in comprehending
old source. Because category membership is based on historical events, developers either need knowled
of those events or they have to memorize information on large quantities of source. Program comprehensiot
changes from using category-based induction to relying on memory for events or source code.

Even when the developer is not constrained by existing practices the choice of source organization is no
always clear-cut. An organization based on the data type being manipulated is one possibility, or there may
only be a few functions and an organization based on functionality supported (i.e., printing) may be more
appropriate. Selecting which to use can be a difficult decision. The following subsections discuss some of
the category formation studies that have been carried out, some of the theories of category formation, anc
possible methods of calculating similarity to category.

Situations where source code categorization arise include: deciding which structure types should contair

declarations 1794 \which members, which source files should contain which object and function definitions, which source files
should be kept in which directories, whether functionality should go in a single function or be spread across
several functions, and what is the sequence of identifiers in an enumerated type?

Explicitly organizing source code constructs so that future readers can make use of their innate ability to
use categories, to perform inductive reasoning, is not meant to imply that other forms of reasoning are not
important. The results of deductive reasoning are generally the norm against which developer performance
is measured. However, in practice, developers do create categories and use induction. Coding guideline
need to take account of this human characteristic. Rather than treating it as an aberration that developer
need to be trained out of, these coding guidelines seek to make use of this innate ability.

13.1 Category formation

How categories should be defined and structured has been an ongoing debate within all sciences. Fc
instance, the methods used to classify living organisms into family, genus, species, and subspecies ha
changed over the years (e.g., most recently acquiring a genetic basis).

Categories do not usually exist in isolation. Category judgment is often organized according to a hierar-
chy of relationships between concepts— a taxonomy. For instance, Jack Russell, German Shepherd, an
Terrier belong to the category of dog, which in turn belongs to the category of mammal, which in turn
belongs to the category of living creature. Organizing categories into hierarchies means that an attribute of
a higher-level category can affect the perceived attributes of a subordinate category. This effect was illus
trated in a study by Stevens and Colié?! Subjects were asked to remember the information contained in
a series of maps (see Figure 0.11). They were then asked questions such as: “Is X east or west of Y?”, an
“Is X north or south of Y?” Subjects gave incorrect answers 18% of the time for the congruent maps, but
45% of the time for the incongruent maps (15% for the homogeneous). They were using information about
the relative locations of the countries to answer questions about the city locations.

74 v 1.0a June 16, 2005

13 Categorization

Introduction m

Alpha Alpha Alpha
Country Country Country
[[o
z Z Z
° o o
X X
o Beta ° Beta o Beta
Y Y Y
Country Country Country
Alpha Alpha Alpha
Country Country Country
oZ oZ oZ
oY oY oY
oX X X
Beta Beta Beta
Country Country Country
Congruent Incongruent Homogeneous

Figure 0.11: Country boundaries distort judgment of relative city locations. Adapted from Stééfs.

Several studies have shown that people use around three levels of abstraction in creating hierarchical

relationships. Ros¢H3% called the highest level of abstraction theperordinate-level- for instance, the

general category furniture. The next level down is lfasic-level this is the level at which most catego-

rization is carried out— for instance, car, truck, chair, or table. The lowest level isuth@dinate-level

denoting specific types of objects. For instance, a family car, a removal truck, my favourite armchair, a

kitchen table. Rosch found that the basic-level categories had properties not shared by the other two cate-
gories; adults spontaneously name objects at this level. It is also the abstract level that children acquire first,
and category members tend to have similar overall shapes.

« A study by Markman and Wisniews# investigated how people view superordinate-level and basic-
level categories as being different. The results showed that basic-level categories, derived from the
same superordinate-level, had a common structure that made it easy for people to compare attributes;
for instance, motorcycle, car, and truck are basic-level categories of vehicle. They all share attributes
(so-calledalignable differencés for instance, number of wheels, method of steering, quantity of
objects that can be carried, size of engine, and driver qualifications that differ but are easily compared.
Superordinate-level categories differ from each other in that they do not share a common structure.
This lack of a common structure means it is not possible to align their attributes to differentiate them.
For these categories, differentiation occurs through the lack of a common structure. For instance, the
superordinate-level categories — vehicle, musical instrument, vegetable, and clothing — do not share
a common structure.

can affect the categories they create and use.

A study by Tanaka and Taylé#’4 showed that the quantity of a person’s knowledge and experience

A study by Johansen and Palm&f showed that representations of perceptual categories can change

with categorization experience. While these coding guidelines are aimed at experienced developers,

June 16, 2005

v 1.0a

75

_ Introduction 13 Categorization

breathes
eats
has skin

Animal

has fins

can swim
has gills
has feathers

is pink
is edible
spawns upstream

can sing is tall can bite

Canary

is yellow can’t fly is dangerous

Figure 0.12: Hypothetical memory structure for a three-level hierarchy. Adapted from C&fils.

they recognize that many experienced developers are likely to be inexperienced comprehenders o
much of the source code they encounter. The guidelines in this book take the default position that,
given a choice, they should assume an experienced developer who is inexperienced with the source
being read.

structure type 52 There_ are Iikely to be differe_nt ways of categorizing the various components of source cod_e. These case:
o el are discussed in more detalil elsewhere._ Co_m_monahty and regulantles shared b_etween different s_e(_:tlon:

typedef name 1618 Of source code may lead developers to implicitly form categories that were not intended by the original

enlgggfréﬁéiﬁ suauthors. The extent to which the root cause is poor categorization by the original developers, or simply
devc.s'i‘!ﬁi'y%’tu'l 1s33 UNrelated regularities, is not discussed in this book.

statement 1606 What method do people use to decide which, if any, category a particular item is a member of? Several
’ different theories have been proposed and these are discussed in the following subsections.

13.1.1 The Defining-attribute theory
The defining-attribute theory proposes that members of a category are characterized by a set of defining
attributes. This theory predicts that attributes should divide objects up into different concepts whose bound
aries are well defined. All members of the concept are equally representative. Also, concepts that are
a basic-level of a superordinate-level concept will have all the attributes of that superordinate level; for
instance, a sparrow (small, brown) and its superordinate bird (two legs, feathered, lays eggs).

Although scientists and engineers may create and use defining-attribute concept hierarchies, experiments
evidence shows that people do not naturally do so. Studies have shown that people do not treat categor
members as being equally representative, and some are rated as more typical thak-tihEssdence
that people do not structure concepts into the neat hierarchies required by the defining-attribute theory wa:s
provided by studies in which subjects verified membership of a more distant superordinate more quickly
than an immediate superordinate (according to the theory, the reverse situation should always be true).

13.1.2 The Prototype theory

In this theory, categories have a central description, the prototype, that represents the set of attributes o
the category. This set of attributes need not be necessary, or sufficient, to determine category membershi
The members of a category can be arranged in a typicality gradient, representing the degree to which the:
represent a typical member of that category. It is also possible for objects to be members of more than one
category (e.g., tomatoes as a fruit, or a vegetable).

13.1.3 The Exemplar-based theory

The exemplar-based theory of classification proposes that specific instanessmplarsact as the pro-
totypes against which other members are compared. Objects are grouped, relative to one another, base

76 v 1.0a June 16, 2005

13 Categorization Introduction m

on some similarity metric. The exemplar-based theory differs from the prototype theory in that specific
instances are the norm against which membership is decided. When asked to name particular members of a
category, the attributes of the exemplars are used as cues to retrieve other objects having similar attributes.

13.1.4 The Explanation-based theory

The explanation-based theory of classification proposes that there is an explanation for why categories have
the members they do. For instance, the biblical classification of foodcietin and uncleanis roughly
explained by saying that there should be a correlation between type of habitat, biological structure, and
form of locomotion; creatures of the sea should have fins, scales, and swim (sharks and eels don’t) and
creatures of the land should have four legs (ostriches don't).

From a predictive point of view, explanation-based categories suffer from the problem that they may
heavily depend on the knowledge and beliefs of the person who formed the category; for instance, the set
of objects a person would remove from their home while it was on fire.

Murphy and Medif?*®! discuss how people can use explanations to achieve conceptual coherence in
selecting the members of a category (see Table 0.5).

Table 0.5: General properties of explanations and their potential role in understanding conceptual coherence. Adapted from
Murphy[#43]

Properties of Explanations Role in Conceptual Coherence
Explanation of a sort, specified over some do- Constrains which attributes will be included in a concept
main of observation representation

Focuses on certain relationships over others in detecting
attribute correlations

Simplify reality Concepts may be idealizations that impose more structure
than is objectively present

Have an external structure— fits in with (or do Stresses intercategory structure; attributes are considered

not contradict) what is already known essential to the degree that they play a part in related theo-
ries (external structures)

Have an internal structure— defined in part by Emphasizes mutual constraints among attributes. May sug-

relations connecting attributes gest how concept attributes are learned

Interact with data and observations in some way Calls attention to inference processes in categorization and
suggests that more than attribute matching is involved

13.2 Measuring similarity

The intent is for these guideline recommendations to be automatically enforceable. This requires A g on

rithm for calculating similarity, which is the motivation behind the following discussion. enereeatie

How might two objects be compared for similarity? For simplicity, the following discussion assumes
an object can have one of two values for any attribute, yes/no. The discussion is based on material in
Classification and Cognitioby W. K. Ested3!

To calculate the similarity of two objects, their corresponding attributes are matched. The product of theimilarity
similarity coefficient of each of these attributes is computed. A matching similarity coefficigntalue in ~ Productrute
the range one to infinity, and the same for every match), is assigned for matching attributes. A nonmatching
similarity coefficients; (a value in the range 0 to 1, and potentially different for each nonmatch), is assigned
for each nonmatching coefficient. For example, consider two birds that either have (plus sign), or do not have
(minus sign), some attribute (hnumbered 1 to 6) (see Table 0.6). Their similarity, based on these attributes is
tXtXSg XtXS5 Xt.

June 16, 2005 v 1.0a 7

_ Introduction 13 Categorization

similarity
contrast model

Table 0.6: Computation of pattern similarity. Adapted from Esf$]

Attribute 1 2 3 4 5 6
Starling + o+ - + o+ o+
Sandpiper + + o+ o+ +
Attribute similarity ¢ ¢t s3 t s5 ¢

When comparing objects within the same category the convention is to give the similarity coefficient,
for matching attributes, a value of one. Another convention is to give the attributes that differ the same
similarity coefficient,s. In the preceding case, the similarity becora&s

Sometimes the similarity coefficient for matches needs to be taken into account. For instance, in the
following two examples the similarity between the first two character sequentgsaile in the second
is t3s. Settingt to be one would result in both pairs of character sequences being considered to have the
same similarity, when in fact the second sequence would be judged more similar than the first. Studies or
same/different judgments show that both reaction time and error rates increase as a function of the numbe
of items being compardd*®! The value oft cannot always be taken to be unity.

A B A B CD
A E A E CD

The previous example computed the similarity of two objects to each other. If we have a category, we
can calculate a similarity to category measure. All the members of a category are listed. The similarity of
each member, compared with every other member, is calculated in turn and these values are summed fc
that member. Such a calculation is shown in Table 0.7.

Table 0.7: Computation of similarity to category. Adapted from Eg888!

Object Ro Bl Sw St Wu Sa Ch Fl Pe Similarity to Category

Robin 1 1 1 s st s s° s 5 3425+ 54255450
Bluebird 1 1 1 s st s 5P s 85 3425454257456
Swallow 1 1 1 s st s s° s 5 3425451 4+2s% 456
Starling s s s 1 3 52 s s s0 1435452453 455420
Vulture s st st 201 2 83 52 83 148243534351 450
Sandpiper s s s 2 01 st s st 14 3s+s24st+sd
Chicken s° 2 80 s6 83 st 1 s 1 245453+ 4355+
Flamingo 56 6 s6 2 52 s s 1 s 14 25+ 52 4 2s° + 356
Penguin 2 5 8P ELE S N ! s 1 245453 +5* 4355+

Some members of a category are often considered to be more typical of that category than other member
These typical members are sometimes treated as exemplars of that category, and serve as reference poi
when people are thinking about that category. While there is no absolute measure of typicality, it is possible
to compare the typicality of two members of a category. The relative typicality, within a category for two or
more objects is calculated from their ratios of similarity to category. For instance, taking the valas of
0.5, the relative typicality of Robin with respect to Vulture4sl4/(4.14 + 1.84) = 0.69, and the relative
typicality of Vulture with respect to Robin i584/(4.14 + 1.84) = 0.31.

Itis also possible to create derived categories from existing categories; for instance, large and small birds
For details on how to calculate typicality within those derived categories, seé’E$(@ghich also provides
experimental results).

An alternative measure of similarity is the contrast model. This measure of similarity depends positively
on the number of attributes two objects have in common, but negatively on the number of attributes that
belong to one but not the other.

78 v 1.0a June 16, 2005

13 Categorization Introduction m

Contrast Sim1z = af (F12) — bf (F1) — ¢f (F») (0.14)

whereF, is the set of attributes common to objects 1 anéli2the set of attributes that object 1 has but not
object 2, andF;, the set of attributes that object 2 has but not object 1. The quantitieandc are constants.
The functionf is some metric based on attributes; the one most commonly appearing in published research
is a simple count of attributes.

Taking the example given in Table 0.7, there are four features shared by the starling and sandpiper and
one that is unique to each of them. This gives:

Contrast Sim = 4a — 1b — 1c (0.15)

based on bird data we might take, for instance; 1, b = 0.5, ande = 0.25 giving a similarity of 3.25.
On the surface, these two models appear to be very different. However, some mathematical manipulation
shows that the two methods of calculating similarity are related.

Simyg = 12" T2 = 12N gn2 (0.16)

Taking the logarithm:

log(Sim12) = ni2log(t) + nq log(s) + ng log(s) (0.17)

letting a = log(t), b = log(s), ¢ = log(s), and noting that the value e&fis less than 1, we get:

log(Sim12) = a(ni2) — b(n1) — c(ne9) (0.18)

This expression for product similarity has the same form as the expression for contrast similarity. Although
b andc have the same value in this example, in a more general form the valdye®ofd be different.

13.2.1 Predicting categorization performance
Studies,Rosctbhaveshownthattheorderinwhichpeoplelistexemplarso f categoriescorrelateswiththeirelsgizatony
For instance, based on the previous example of bird categories when asked to “name the bird which c8f{g&an-e
most quickly to mind, Robin or Penguin”, the probability of Robin being the answiet4g'(4.144-2.80) =
0.60, an unrealistically low probability. If the similarity values are weighted according to the frequency of
each member’s entry in a subject's memory array (Estes estimated the figures given in Table 0.8), the
probability of Robin becomek.24/(1.24 + 0.06) = 0.954, a much more believable probability.

Table 0.8: Computation of weighted similarity to category. From E$3.

Object Similarity Formula s=0.5 Relative Frequency Weighted Similarity
Robin 3+ 25+ st +2s° + 56 4.14 0.30 1.24
Bluebird 3425+ s +2s% + s6 414 0.20 0.83
Swallow 3+ 254 s* +2s° + 56 4.14 0.10 0.41
Starling 1435452453+ 5% 4250 2.94 0.15 0.44
Vulture 1452 +3s34+3st+s° 1.84 0.02 0.04
Sandpiper 1+3s+s2+s*+s5 2.94 0.05 0.15
Chicken 245483+ s5t 4355+ 2.80 0.15 0.42
Flamingo 14 2s + 52 + 2s® 4 355 2.36 0.01 0.02
Penguin 24+ s5+5% 4+ 51 4+355+ 6 2.80 0.02 0.06

June 16, 2005 v 1.0a 79

_ Introduction 13 Categorization

The need to use frequency weightings to calculate a weighted similarity value has been verified by Nosof-
skyl973]

The method of measuring similarity just described has been found to be a good predictor of the error
probability of people judging which category a stimulus belongs to. The following analysis is based on a
study performed by Shepard, Hovland, and Jenki{3.

A simpler example than the bird category is used to illustrate how the calculations are performed. Here,
the object attributes are color and shape, made up of the four combinations black/white, triangles/squares
Taking the case where the black triangle and black square have been assigned to category A, and the whi
triangle and white square have been assigned to category B, we get Table 0.9.

Table 0.9: Similarity to category (black triangle and black square assigned to category A; white triangle and white square
assigned to category B).

Stimulus Similarity to A Similarity to B
Dark triangle 1+s s+ s?
Dark square 1+s s+ 82
Light triangle 5+ 82 1+s
Light square s+ s2 1+s

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1+s N 1
(1+s)+(s+s2) "~ 1+s

(0.19)

Whens is 1 the expected probability is no better than a random choice; whg® the probability is a
certainty.

Assigning different stimulus to different categories can change the expected response probability; for
instance, by assigning the black triangle and the white square to category A and assigning the white triangle
and black square to category B, we get the category similarities shown in Table 0.10.

Table 0.10: Similarity to category (black triangle and white square assigned to category A; white triangle and black square
assigned to category B).

Stimulus Similarity to A Similarity to B
Dark triangle s+ 82 2s

Dark square 2s s+ 2
Light triangle 2s s+ 2
Light square s+ 82 2s

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1+s2 N 1+ 82
(2s) + (1 + s2) (1+s)2

For all values ofs between 0 and 1 (but not those two values), the probability of a subject assigning a
stimulus to the correct category is always less than for the category defined previously, in this case.

In the actual study performed by Shepard, Hovland, and JeRkisstimuli that had three attributes,
color/size/shape, were used. If there are two possible values for each of these attributes, there are eigt
possible stimuli (see Figure 0.13).

(0.20)

80 v 1.0a June 16, 2005

13 Categorization Introduction m

Figure 0.13: Representation of stimuli with shape in the horizontal plane and color in one of the vertical planes. Adapted from
Shepard!172]

I II II

v \Y VI

Figure 0.14: One of the six unique configurations (i.e., it is not possible to rotate one configuration into another) of selecting
four times from eight possibilities. Adapted from Shep@#d2

Each category was assigned four different members. There are 70 different ways of taking four things
from a choice of eight8!/(4!4!)), creating 70 possible categories. However, many of these 70 different
categories share a common pattern; for instance, all having one attribute, like all black or all triangles. If
this symmetry is taken into account, there are only six different kinds of categories. One such selection of
six categories is shown in Figure 0.14, the black circles denoting the selected attributes.

Having created these six categories, Shepard et al. trained and measured the performance of subjects in
assigning presented stimuli (one of the list of 70 possible combinations of four things— Figure 0.15) to one
of them.

Este§® found a reasonable level of agreement between the error rates reported by Shepard et al. and the
rates predicted by the similarity to category equations. There is also a connection between categorization
performance and Boolean complexity; this is discussed elsewhere. 17283?%?5#1%%

syntax
13.3 Cultural background and use of information

The attributes used to organize information (e.g., categorize objects) has been found to vary acrosstdgdlization

tured®™ and between experts and non-experts. The following studies illustrate how different groups 6fjual dit

June 16, 2005 v 1.0a 81

_ Introduction 14 Decision making

A AR

H -~ A
AAD.AD

_nlisiN P
A A A

N A

A
H- N0
0

H R]

Figure 0.15: Example list of categories. Adapted from Shepaté

_ people agree or differ in their categorization behavior (a cultural difference in the naming of objects is
naming 7e7 - discussed elsewhere):

cultural differences

« A study by Bailenson, Shum, and Col&y asked US bird experts (average of 22.4 years bird watch-
ing), US undergraduates, and ordinary Itzaj (Maya Amerindians people from Guatemala) to sort two
sets (of US and Maya) of 104 bird species into categories. The results found that the categorization
choices made by the three groups of subjects were internally consistent within each group. The cor-
relation between the taxonomies, created by the categories, and a published scientific taxonomy of
US experts (0.60 US birds, 0.70 Maya birds), Itzaj (0.45, 0.61), and nonexperts (0.38, 0.34). The US
experts correlated highly with the scientific taxonomy for both sets of birds, the Itzaj only correlated
highly for Maya birds, and the nonexperts had a low correlation for either set of birds. The reasons
given for the Maya choices varied between the expert groups; US experts were based on scientific
taxonomy, Itzaj were based on ecological justifications (the birds relationship with its environment).
Cultural differences were found in that, for instance, US subjects were more likely to generalise from
songbirds, while the Itzaj were more likely to generalize from perceptually striking birds.

« A study by Proffitt, Coley, and Medi78l told three kinds of tree experts (landscape gardeners, parks
maintenance workers, scientists researching trees) about a new disease that affected two kinds of tre
(e.g., Horsechestnut and Ohio buckeye). Subjects were then asked what other trees they though
might also be affected by this disease. The results showed differences between kinds of experts in the
kinds of justifications given for the answers. For instance, landscapers and maintenance workers use
more causal/ecological explanations (tree distribution, mechanism of disease transmission, resistance
and susceptibility) and fewer similarity-based justifications (species diversity and family size). For
taxonomists this pattern was reversed.

14 Decision making

Writing source code is not a repetitive process. Developers have to think about what they are going to
write, which means they have to make decisions. Achieving the stated intent of these coding guidelines

82 v 1.0a June 16, 2005

14 Decision making Introductiovm

(minimizing the cost of ownership source code) requires that they be included in this, developer, d%ﬁ&%m

making process. nroduction

There has been a great deal of research into how and why people make decisions in various contexts.
For instance, consumer research trying to predict how a shopper will decide among packets of soap powder
on a supermarket shelf. While the items being compared and their attributes vary (e.g., which soap will
wash the whitest, should &rf statement or awitch statement be used; which computer is best), the same
underlying set of mechanisms appear to be used, by people, in making decisions.

The discussion in this section has been strongly influencethieyAdaptive Decision Makday Payne,
Bettman, and Johnsdt8 The model of human decision making proposed by Payne et al. is based on the
idea that people balance the predicted cognitive effort required to use a particular decision-making strategy
against the likely accuracy achieved by that decision-making strategy. The book lists the following major
assumptions:

.. . . 018]
Decision strategies are sequences of mental operations that can be usefully represented as productf

of the form IF (condition 1, . . ., condition n) THEN (action 1, . . ., action m).
» The cognitive effort needed to reach a decision using a particular strategy is a function of the number and
type of operators (productions) used by that strategy, with the relative effort levels of various strategies
contingent on task environments.
Different strategies are characterized by different levels of accuracy, with the relative accuracy levels of
various strategies contingent on task environments.
As a result of prior experiences and training, a decision maker is assumed to have more than one strategy
(sequence of operations) available to solve a decision problem of any complexity.
Individuals decide how to decide primarily by considering both the cognitive effort and the accuracy of
the various strategies.
Additional considerations, such as the need to justify a decision to others or the need to minimize the
conflict inherent in a decision problem, may also impact strategy selection.
» The decision of how to decide is sometimes a conscious choice and sometimes a learned contingency
among elements of the task and the relative effort and accuracy of decision strategies.

Strategy selection is generally adaptive and intelligent, if not optimal.

14.1 Decision-making strategies

Before a decision can be made it is necessary to select a decision-making strategy. For instance, a developer
who is given an hour to write a program knows there is insufficient time for making complicated trade-offs
among alternatives. When a choice needs to be made, the likely decision-making strategy adopted would be
to compare the values of a single attribute, the estimated time required to write the code (a decision-makipghic

strategy based on looking at the characteristics of a single attribute is known as the lexicographic he bt .

Researchers have found that people use a number of different decision-making strategies. In this section
we discuss some of these strategies and the circumstances under which people might apply them. The
list of strategies discussed in the following subsections is not exhaustive, but it does cover many of the
decision-making strategies used when writing software.

The strategies differ in several ways. For instance, some make trade-offs among the attributes of the
alternatives (making it possible for an alternative with several good attributes to be selected instead of the
alternative whose only worthwhile attribute is excellent), while others make no such trade-offs. From the
human perspective, they also differ in the amount of information that needs to be obtained and the amount
of (brain) processing needed to make a decision. A theoretical analysis of the cost of decision making is
given by Shugah-178l

14.1.1 The weighted additive rule

The weighted additive rule requires the greatest amount of effort, but delivers the most accurate resuleidited ad-
ditive rule

June 16, 2005 v 1.0a 83

_ Introduction 14 Decision making

also requires that any conflicts among different attributes be confronted. Confronting conflict is something,
as we shall see later, that people do not like doing. This rule consists of the following steps:

1. Build a list of attributes for each alternative.
2. Assign a value to each of these attributes.

3. Assign a weight to each of these attributes (these weights could, for instance, reflect the relative
importance of that attribute to the person making the decision, or the probability of that attribute
occurring).

4. For each alternative, sum the product of each of its attributes’ value and weight.
5. Select the alternative with the highest sum.

An example, where this rule might be applied, is in deciding whether an equality test against zero should be
made before the division of two numbers inside a loop. Attributes might include performance and reliability.
If a comparison against zero is made the performance will be decreased by some amount. This disadvantag
will be given a high or low weight depending on whether the loop is time-critical or not. The advantage is
that reliability will be increased because the possibility of a divide by zero can be avoided. If a comparison
against zero is not made, there is no performance penalty, but the reliability could be affected (it is necessan
to take into account the probability of the second operand to the divide being zero).

14.1.2 The equal weight heuristic

The equal weight heuristic is a simplification of the weighted additive rule in that it assigns the same weight
to every attribute. This heuristic might be applied when accurate information on the importance of each
attribute is not available, or when a decision to use equal weights has been made.

14.1.3 The frequency of good and bad features heuristic

People do not always have an evaluation function for obtaining the value of an attribute. A simple estimate
in terms of good/bad is sometimes all that is calculated (looking at things in black and white). By reducing
the range of attribute values, this heuristic is a simplification of the equal weight heuristic, which in turn is
a simplification of the weighted additive rule. This rule consists of the following steps:

1. List the good and bad attributes of every alternative.
2. Calculate the sum of each attributes good and the sum of its bad attributes.

3. Select the alternative with the highest count of either good or bad attributes, or some combination of
the two.

A coding context, where a good/bad selection might be applicable, occurs in choosing the type of an object
If the object needs to hold a fractional part, it is tempting to use a floating type rather than an integer type
(perhaps using some scaling factor to enable the fractional part to be represented). Drawing up a list of gooc
and bad attributes ought to be relatively straight-forward; balancing them, to select a final type, might be a
little more contentious

14.1.4 The majority of confirming dimensions heuristic
While people may not be able to explicitly state an evaluation function that provides a numerical measure
of an attribute, they can often give a yes/no answer to the quedtidhe value of attribute X greater (or
less) for alternative A compared to alternative.BPhis enables them to determine which alternative has
the most (or least) of each attribute. This rule consists of the following steps:

1. Select a pair of alternatives.

2. Compare each matching attribute in the two alternatives.

84 v 1.0a June 16, 2005

14 Decision making Introductiovm

3. Select the alternative that has the greater number of winning attributes.
4. Pair the winning alternative with an uncompared alternative and repeat the compare/select steps.
5. Once all alternatives have been compared at least once, the final winning alternative is selected.

In many coding situations there are often only two viable alternatives. Pairwise comparison of their at-
tributes could be relatively easy to perform. For instance, when deciding whether to use a sequénce of
statements or switch statement, possible comparison attributes include efficiency of execution, readability,
ease of changeability (adding new cases, deleting, or merging existing ones).

14.1.5 The satisficing heuristic
The result of the satisficing heuristic depends on the order in which alternatives are checked and often daesficing
not check all alternatives. Such a decision strategy, when described in this way, sounds unusual, Mggﬁgﬁﬂg

simple to perform. This rule consists of the following steps:

1. Assign a cutoff, or aspirational, level that must be met by each attribute.
2. Perform the following for each alternative:

e Check each of its attributes against the cutoff level, rejecting the alternative if the attribute is
below the cutoff.
« If there are no attributes below the cutoff value, accept this alternative.

3. If no alternative is accepted, revise the cutoff levels associated the attributes and repeat the previous
step.

An example of the satisficing heuristic might be seen when selecting a library function to return some
information to a program. The list of attributes might include the amount of information returned and the
format it is returned in (relative to the format it is required to be in). Once a library function meeting the

developers’ minimum aspirational level has been found, additional effort is not usually invested in finding
a better alternative.

14.1.6 The lexicographic heuristic

The lexicographic heuristic has a low effort cost, but it might not be very accurate. It can also be intransitéteggraphic

with X preferred to Y, Y preferred to Z, and Z preferred to X. This rule consists of the following steps: decisionh;‘g‘k?ﬁg

1. Determine the most important attribute of all the alternatives.
2. Find the alternative that has the best value for the selected most important attribute.

3. If two or more alternatives have the same value, select the next most important attribute and repeat
the previous step using the set of alternatives whose attribute values tied.

4. The result is the alternative having the best value on the final, most important, attribute selected.

An example of the intransitivity that can occur, when using this heuristic, might be seen when writing
software for embedded applications. Here the code has to fit within storage units that occur in fixed-size
increments (e.g., 8K chips). It may be possible to increase the speed of execution of an application by
writing code for specific special cases; or have generalized code that is more compact, but slower. We might
have the following, commonly seen, alternatives (see Table 0.11).

Table 0.11: Storage/Execution performance alternatives.

Alternative Storage Needed Speed of Execution

X 7K Low
Y 15K High
z 10K Medium

June 16, 2005 v 1.0a 85

_ Introduction 14 Decision making

Based on storage needed, X is preferred to Y. But because storage comes in 8 K increments there i
no preference, based on this attribute, between Y and Z; however, Y is preferred to Z based on speed o
execution. Based on speed of execution Z is referred to X.

14.1.6.1 The elimination-by-aspects heuristic

The elimination-by-aspects heuristic uses cutoff levels, but it differs from the satisficing heuristic in that
alternatives are eliminated because their attributes fall below these levels. This rule consists of the following
steps:

1. The attributes for all alternatives are ordered (this ordering might be based on some weighting scheme)
2. For each attribute in turn, starting with the most important, until one alternative remains:

» Select a cutoff value for that attribute.
* Eliminate all alternatives whose value for that attribute is below the cutoff.

3. Select the alternative that remains.

This heuristic is often used when there are resource limitations, for instance, deadlines to meet, performanc
levels to achieve, or storage capacities to fit within.

14.1.7 The habitual heuristic
The habitual heuristic looks for a match of the current situation against past situations, it does not contain any
evaluation function (although there are related heuristics that evaluate the outcome of previous decisions’
This rule consists of the step:

1. select the alternative chosen last time for that situation.

Your author’s unsubstantiated claim is that this is the primary decision-making strategy used by software
developers.
Sticking with a winning solution suggests one of two situations:

1. So little is known that once a winning solution is found, it is better to stick with it than to pay the cost
(time and the possibility of failure) of looking for a better solution that might not exist.

2. The developer has extensively analyzed the situation and knows the best solution.

Coding decisions are not usually of critical importance. There are many solutions that will do a satisfactory
job. It may also be very difficult to measure the effectiveness of any decision, because there is a significant
delay between the decision being made and being able to measure its effect. In many cases, it is almos
impossible to separate out the effect of one decision from the effects of all the other decisions made (there
may be a few large coding decisions, but the majority are small ones).

recognition- A study by Kleid”2%! describes how fireground commanders use their experience to size-up a situation
ggg];gn mak. Vvery rapidly. Orders are given to the firefighters under their command without any apparent decisions being
ing made (in their interviews they even found a fireground commander who claimed that neither he, nor other

commanders, ever made decisions; they knew what to do). Klein calls this stratagnition-primed
decision making

14.2 Selecting a strategy
Although researchers have uncovered several decision-making strategies that people use, their existenc
does not imply that people will make use of all of them. The strategies available to individuals can vary
depending on their education, training, and experience. A distinction also needs to be made between :
person’s knowledge of a strategy (through education and training) and their ability to successfully apply it
(perhaps based on experience).

The task itself (that creates the need for a decision to be made) can affect the strategy used. These tas
effects include task complexity, the response mode (how the answer needs to be given), how the informatior
is displayed, and context. The following subsections briefly outline these effects.

86 v 1.0a June 16, 2005

14 Decision making Introductiovm

14.2.1 Task complexity
In general the more complex the decision, the more people will tend to use simplifying heuristics. tafh@mplexity
following factors influence complexity: decision making

» Number of alternativesAs the number of alternatives that need to be considered grows, there are
shifts in the decision-making strategy used.

« Number of attributesincreasing the number of attributes increases the confidence of people’s judg-
ments, but it also increases their variability. The evidence for changes in the quality of decision
making, as the number of attributes increases, is less clear-cut. Some studies show a decrease in qual-
ity; it has been suggested that people become overloaded with information. There is also the problem
of deciding what constitutes a high-quality decision.

» Time pressurePeople have been found to respond to time pressure in one of several ways. Some
respond by accelerating their processing of information, others respond by reducing the amount of
information they process (by filtering the less important information, or by concentrating on certain
kinds of information such as negative information), while others respond by reducing the range of
ideas and actions considered.

14.2.2 Response mode
There are several different response modes. For instance, a choice response mode frames the alternatives
in terms of different choices; a matching response mode presents a list of questions and answers and the
decision maker has to provide a matching answer to a question; a bidding response mode requires a value
to be given for buying or selling some object. There are also other response modes, that are not listed here.

The choice of response mode, in some cases, has been shown to significantly influence the preferred
alternatives. In extreme cases, making a decision may result in X being preferred to Y, while the mathemat-
ically equivalent decision, presented using a different response mode, can result in Y being preferred to X.
For instance, in gambling situations it has been found that people will prefer X to Y when asked to select
between two gambles (where X has a higher probability of winning, but with lower amounts), but when
asked to bid on gambles they prefer Y to X (with Y representing a lower probability of winning a larger
amount).

Such behavior breaks what was once claimed to be a fundamental principle of rational decision theory,
procedure invarianceThe idea behind this principle was that people had an invariant (relatively) set of in-
ternal preferences that were used to make decisions. These experiments showed that sometimes preferences
are constructed on the fly. Observed preferences are likely to take a person’s internal preferences and the
heuristics used to construct the answer into account.

Code maintenance is one situation where the task can have a large impact on how the answer is selected.
When small changes are made to existing code, many developers tend to operate in a matching mode,
choosing constructs similar, if not identical, to the ones in the immediately surrounding lines of code. If
writing the same code from scratch, there is nothing to match, another response mode will necessarily need
to be used in deciding what constructs to use.

A lot of the theoretical discussion on the reasons for these response mode effects has involved distinguish-
ing between judgment and choice. People can behave differently, depending on whether they are asked to
make a judgment or a choice. When writing code, the difference between judgment and choice is not always
clear-cut. Developers may believe they are making a choice between two constructs when in fact they have
already made a judgment that has reduced the number of alternatives to choose between.

Writing code is open-ended in the sense that theoretically there are an infinite number of different ways
of implementing what needs to be done. Only half a dozen of these might be considered sensible ways
of implementing some given functionality, with perhaps one or two being commonly used. Developers
often limit the number of alternatives under consideration because of what they perceive to be overriding
external factors, such as preferring an inline solution rather than calling a library function because of alleged

June 16, 2005 v 1.0a 87

_ Introduction 14 Decision making

agenda effects
decision making

in line or function or macro in line or function or macro
in line or function macro in line function or macro
in line function function macro

Figure 0.16: Decisions based on different pair-wise associations.

quality problems with that library. One possibility is that decision making during coding be considered as a
two-stage process, using judgment to select the alternatives, from which one is chosen.

14.2.3 Information display

Studies have shown that how information, used in making a decision, is displayed can influence the choice
of a decision-making stratedy>” These issues include: only using the information that is visible (the
concreteness principle), the difference between available information and processable information (display
ing the price of one brand of soap in dollars per ounce, while another brand displays francs per kilogram),
the completeness of the information (people seem to weigh common attributes more heavily than unique
ones, perhaps because of the cognitive ease of comparison), and the format of the information (e.g., digit:
or words for numeric values).

What kind of information is on display when code is being written? A screen’s worth of existing code
is visible on the display in front of the developer. There may be some notes to the side of the display. All
other information that is used exists in the developer’s head.

Existing code is the result of past decisions made by the developer; it may also be modified by future
decisions that need to be made (because of a need to modify the behavior of this existing code). Fol
instance, the case in which another conditional statement needs to be added within a deeply nested series
conditionals. The information display (layout) of the existing code can affect the developer’s decision about
how the code is to be modified (a function, or macro, might be created instead of simply inserting the new
conditional). Here the information display itself is an attribute of the decision making (code wrapping, at
the end of a line, is an attribute that has a yes/no answer).

14.2.4 Agenda effects

The agenda effect occurs when the order in which alternatives are considered influences the final answe
For instance, take alternatives X, Y, and Z and group them into some form of hierarchy before performing a
selection. When asked to choose between the pair [X, Y] and Z (followed by a choice between X and Y if
that pair is chosen) and asked to choose between the pair [X, Z] and Y (again followed by another choice if
that pair is chosen), an agenda effect would occur if the two final answers were different.

An example of the agenda effect is the following. When writing coding, it is sometimes necessary to
decide between writing in line code, using a macro, or using a function. These three alternatives can be
grouped into a natural hierarchy depending on the requirements. If efficiency is a primary concern, the first
decision may be betweehin line, macro] andfunction, followed by a decision betweein line
andmacro (if that pair is chosen). If we are more interested in having some degree of abstraction, the first
decision is likely to be betweelmacro, function] andin line (see Figure 0.16).

In the efficiency case, if performance is important in the context of the decisianline, macro] is
likely to be selected in preference fanction. Once this initial choice has been made other attributes can
be considered (since both alternatives have the same efficiency). We can now decide whether abstraction
considered important enough to seleatro overin line.

88 v 1.0a June 16, 2005

14 Decision making Introductiovm

If the initial choice had been betweg¢macro, function] andin line, the importance of efficiency
would have resulted iin 1ine being chosen (when paired wiflanction, macro appears less efficient by
association).

14.2.5 Matching and choosing
When asked to make a decision basednueitching a person is required to specify the value of somematching and
variable such that two alternatives are considered to be equivalent. For instance, how much time shoufg®®*'"9
be spent testing 200 lines of code to make it as reliable as the 500 lines of code that has had 10 hours of
testing invested in it? When asked to make a decision baseti@oe a person is presented with a set of
alternatives and is required to specify one of them.

A study by Tversky, Sattath, and SloWt8! investigated th@rominence hypothesihis proposes that
when asked to make a decision based on choice, people tend to use the prominent attributes of the options
presented (adjusting unweighted intervals being preferred for matching options). Their study suggested that
there were differences between the mechanisms used to make decisions for matching and choosing.

14.3 The developer as decision maker

The writing of source code would seem to require developers to make a very large number of decisions.
However, experience shows that developers do not appear to be consciously making many decisions con-
cerning what code to write. Most decisions being made involve issues related to the mapping from the
application domain, choosing algorithms, and general organizational issues (i.e., where functions or objects
should be defined).

Many of the coding-level decisions that need to be made occur again and again. Within a year or so,
in full-time software development, sufficient experience has usually been gained for many decisions to be
reduced to matching situations against those previously seen, and selecting the corresponding solution. For
instance, the decision to use a seriesiffstatements or awitch statement might require the pattern
same variable tested against integer constant and more than two tests ardarzelgue before awitch ; recognition-
statement is used. This is what KIEf! calls recognition-primed decision making. This code writimgmed
methodology works because there is rarely a need to select the optimum alternative from those avaifable.

Some decisions occur to the developer as code is being written. For instance, a developer may notice
that the same sequence of statements, currently being written, was written earlier in a different part of the
source (or perhaps it will occur to the developer that the same sequence of statements is likely to be needed
in code that is yet to be written). At this point the developer has to make a decision about making a decision
(metacognition). Should the decision about whether to create a function be put off until the current work
item is completed, or should the developer stop what they are currently doing to make a decision on whether
to turn the statement sequence into a function definition? Remembering work items and metacognitive
decision processes are handled by a developer’s attention. The sulgéendibnis discussed elsewhere.attention

Just because developers are not making frequent, conscious decisions does not mean that their choices
are consistent and repeatable (they will always make the same decision). There are a number of both internal
and external factors that may affect the decisions made. Researchers have uncovered a wide range of issues,
a few of which are discussed in the following subsections.

14.3.1 Cognitive effort vs. accuracy
People like to make accurate decisions with the minimum of effort. In practice, selecting a decision-gnakingccuracy
strategy requires trading accuracy against effort (or to be exact, expected effort making the decisidffS{Hgnaking
actual effort required can only be known after the decision has been made).

The fact that people do make effort/accuracy trade-offs is shown by the results from a wide range of
studies (this issue is also discussed elsewhere, and Payn&%# abliscuss this topic in detail). Séjeodst/?ccuracy
Figure 0.17 for a comparison. e

The extent to which any significant cognitive effort is expended in decision making while writing code
is open to debate. A developer may be expending a lot of effort on thinking, but this could be related to
problem solving, algorithmic, or design issues.

June 16, 2005 v 1.0a 89

_ Introduction 14 Decision making

developer
flow

developer o
intuition

developer
fun

developer

emotional fac-
tors)
weighted o
additive rule

1.0 — WADD
ﬁ‘ EQW
8 0.75
s
< MCD
§ 0.5 — LEX
5 ' EBA
Q
2
2 025
=
&

0 | | | |
0 50 100 150 200
Effort

Figure 0.17: Effort and accuracy levels for various decision-making strategies; EBA (Elimination-by-aspects heuristic), EQW
(equal weight heuristic), LEX (lexicographic heuristic), MCD (majority of confirming dimensions heuristic), RC (Random
choice), and WADD (weighted additive rule). Adapted from Pal}RE!

One way of performing an activity that is not much talked aboutiois— performing an activity with-
out any conscious effort— often giving pleasure to the performer. A best-selling book on the subject of
flow?®4l is subtitled “The psychology of optimal experience”, something that artistic performers often talk
about. Developers sometimes talkgafing with the flowor just letting the writing flowwhen writing code;
something writers working in any medium might appreciate. However, it is your author's experience that
this method of working often occurs when deadlines approach and developers are faced with writing a lot
of code quickly. Code written usiniiow is often very much like a river; it has a start and an ending, but
between those points it follows the path of least resistance, and at any point readers rarely have any idea c
where it has been or where it is going. While works of fiction may gain from being written in this way, the
source code addressed by this book is not intended to be read for enjoyment. While developers may enjo
spending time solving mysteries, their employers do not want to pay them to have to do so.

Code written usindlow is not recommended, and is not discussed further here. The use of intuition is
discussed elsewhere.

14.3.2 Which attributes are considered important?

Developers tend to consider mainly technical attributes when making decisions. Economic attributes are
often ignored, or considered unimportant. No discussion about attributes would be complete without men-
tioning fun. Developers have gotten used to the idea that they can enjoy themselves at workuaoing
things. Alternatives that have a negative value for the fun attribute, and a large positive value for the time to
carry out attribute are often quickly eliminated.

The influence of developer enjoyment on decision making, can be seen in many developers’ preference
for writing code, rather than calling a library function. On a larger scale, the often-heard developer rec-
ommendation for rewriting a program, rather than reengineering an existing one, is motivated more by the
expected pleasure of writing code than the economics (and frustration) of reengineering.

One reason for the lack of consideration of economic factors is that many developers have no training, or
experience in this area. Providing training is one way of introducing an economic element into the attributes
used by developers in their decision making.

14.3.3 Emotional factors

Many people do not like being in a state of conflict and try to avoid it. Making a decision can create conflict,
by requiring one attribute to be traded off against another. For instance, having to decide whether it is
more important for a piece of code to execute quickly or reliably. It has been argued that people will avoid
strategies that involve difficult, emotional, value trade-offs.

Emotional factors relating to source code need not be limited to internal, private developer decision

90 v 1.0a June 16, 2005

14 Decision making Introductiovm

making. During the development of an application involving more than one developer, particular parts
of the source are often considered todvenedby individual developer’s. A developer asked to work on
another developers source code, perhaps because that person is away, will sometimes feel the need to adopt
thestyleof that developer, making changes to the code in a way that is thought to be acceptable to the absent
developer. Another approach is to ensure that the changes stand out fromrniescode. On the original
developers return, the way in which changes were made is explained. Because they stand out, developers
can easily see what changes were madeeo code and decide what to do about them.

People do not like to be seen to make mistakes. It has been préi8set people have difficulty
using a decision-making strategy, that makes it explicit that there is some amount of error in the selected
alternative. This behavior occurs even when it can be shown that the strategy would lead to better, on
average, solutions than the other strategies available.

14.3.4 Overconfidence
A person is overconfident when their belief in a proposition is greater than is warranted by the informati@ganfidence
available to them. It has been argued that overconfidence is a useful attribute that has been selected for by
evolution. Individuals who overestimates their ability are more likely to undertake activities they would not
otherwise have been willing to do. Taylor and Brd%f?! argue that a theory of mental health defined in
terms of contact with reality does not itself have contact with reality: “Rather, the mentally healthy person
appears to have the enviable capacity to distort reality in a direction that enhances self-esteem, maintains
beliefs in personal efficacy, and promotes an optimistic view of the future.”

Numerous studies have shown that most people are overconfident about their own abilities compared
with others. People can be overconfident in their ability for several reasons: confirmation bias carf A"
available information being incorrectly interpreted; a person’s inexpert calibration (the degree of correlation
between confidence and performance) of their own abilities is another reason. A recefit%tody also
highlighted the importance of the how, what, and whom of questioning in overconfidence studies. In some
cases, it has been shown to be possible to make overconfidence disappear, depending on how the question is
asked, or on what question is asked. Some results also show that there are consistent individual differences
in the degree of overconfidence.

Charles Darwin, In
The descent of mal
1871, p. 3

A study by Glenberg and Epstéi#! showed the danger of a little knowledge. They asked students, who
were studying either physics or music, to read a paragraph illustrating some central principle (of physics or
music). Subjects were asked to rate their confidence in being able to accurately answer a question about
the text. They were then presented with a statement drawing some conclusion about the text (it was either
true or false), which they had to answer. They then had to rate their confidence that they had answered the
guestion correctly. This process was repeated for a second statement, which differed from the first in having
the opposite true/false status.

The results showed that the more physics or music courses a subject had taken, the more confident they
were about their own abilities. However, a subject’s greater confidence in being able to correctly answer
a question, before seeing it, was not matched by a greater ability to provide the correct answer. In fact as
subjects’ confidence increased, the accuracy of the calibration of their own ability went down. Once they
had seen the question, and answered it, subjects were able to accurately calibrate their performance.

Subjects did not learn from their previous performances (in answering questions). They could have used
information on the discrepancy between their confidence levels before/after seeing previous questions to
improve the accuracy of their confidence estimates on subsequent questions.

The conclusion drawn by Glenberg and Epstein was that subjects’ overconfidence judgments were based
on self-classification as an expert, within a domain, not the degree to which they comprehended the text.

A study by Lichtenstein and Fishh&f discovered a different kind of overconfidence effect. As the
difficulty of a task increased, the accuracy of people’s estimates of their own ability (to perform the task)

ignorance more frequently begets confidence than does knowledge

June 16, 2005 v 1.0a 91

_ Introduction 14 Decision making

0.9 —
0.8 —
0.7 —|

0.6 —=&

Proportion correct

0.5

r\‘

0.6 0.7 0.8 0.9 1.0

Subjects’ response

Figure 0.18: Calibration of hard and easy questions. Adapted from LichtenS&in.

decreased. In their study, Lichtenstein and Fishhoff asked subjects general knowledge questions. Thi
questions were divided into two groups, hard and easy. The results in Figure 0.18 show that subjects
overestimated their ability (bottom scale) to correctly answer (actual performance, left scale) hard questions
On the other hand, they underestimated their ability to answer easy questions. The responses of a persc
with perfect self-knowledge are given by the solid line.

These, and subsequent results, show that the skills and knowledge that constitute competence in a parti
ular domain are the same skills needed to evaluate one’s (and other people’s) competence in that domai
People who do not have these skills and knowledge lack metacognition (the name given by cognitive psy-
chologists to the ability of a person to accurately judge how well they are performing). In other words, the
knowledge that underlies the ability to produce correct judgment is the same knowledge that underlies the
ability to recognize correct judgment.

Some very worrying results, about what overconfident people will do, were obtained in a study performed
by Arkes, Dawes, and Christenséf. This study found that subjects used a formula (that calculated the
best decision in a probabilistic context) provided to them as part of the experiment less when incentives
were provided or the subjects thought they had domain expertise. This behavior even continued when the
subjects were given feedback on the accuracy of their own decisions. The explanation, given by Arkes et al.
was that when incentives were provided, people changed decision-making strategies in an attempt to bez
the odds. Langé&®! calls this behaviothe illusion of contral

Developers overconfidence and their aversion to explicit errors can sometimes be seen in the handling
of floating-point calculations. A significant amount of mathematical work has been devoted to discovering
the bounds on the errors for various numerical algorithms. Sometimes it has been proved that the errot
in the result of a particular algorithm is the minimum error attainable (there is no algorithm whose result
has less error). This does not seem to prevent some developers from believing that they can design a mor
accurate algorithm. Phrases, suchhasan errorandaverage erroy in the presentation of an algorithms
error analysis do not help. An overconfident developer could take this as a hint that it is possible to do better
for the conditions that prevail in his (or her) application (and not having an error analysis does not disprove
it is not better).

14.4 The impact of guideline recommendations on decision making

A set of guidelines can be more than a list of recommendations that provide a precomputed decision matrix
A guidelines document can provide background information. Before making any recommendations, the
author(s) of a guidelines document need to consider the construct in detail. A good set of guidelines will
document these considerations. This documentation provides a knowledge base of the alternatives the
might be considered, and a list of the attributes that need to be taken into account. Ideally, precomputec

92 v 1.0a June 16, 2005

14 Decision making Introductiovm

values and weights for each attribute would also be provided. At the time of this writing your author only
has a vague idea about how these values and weights might be computed, and does not have the raw data
needed to compute them.

A set of guideline recommendations can act as a lightening rod for decisions that contain an emotional
dimension. Adhering to coding guidelines being the justification for the decision that needs to bé{m@gﬂs
Having to justify decisions can affect the decision-making strategy used. If developers are expét ecgglngs)
adhere to a set of guidelines, the decisions they make could vary depending on whether the code they write

is independently checked (during code review, or with a static analysis tool).

14.5 Managements impact on developers decision making
Although lip service is generally paid to the idea that coding guidelines are beneficial, all developers seem
to have heard of a case where having to follow guidelines has been counterproductive. In practice, when first
introduced, guidelines are often judged by both the amount of additional work they create for developers and
the number of faults they immediately help locate. While an automated tool may uncover faults in existing
code, this is not the primary intended purpose of using these coding guidelines. The cost of adhering to
guidelines in the present is paid by developers; the benefit is reaped in the future by the owners of the
software. Unless management successfully deals with this cost/benefit situation, developers could decide it
is not worth their while to adhere to guideline recommendations.

What factors, controlled by management, have an effect on developers’ decision making? The following
subsections discuss some of them.

14.5.1 Effects of incentives
Some deadlines are sufficiently important that developers are offered incentives to meet them. Studies, on
use of incentives, show that their effect seems to be to make people work harder, not necessarily smarter.

Increased effort is thought to lead to improved results. Research by Paese andSfidaakd that
increased effort led to increased confidence in the result, but without there being any associated increase in
decision accuracy.

Before incentives can lead to a change of decision-making strategies, several conditions need to be met:

« The developer must believe that a more accurate strategy is required. Feedback on the accuracy
of decisions is the first step in highlighting the need for a different strd®gybut it need not be
sufficient to cause a change of strategy.

 Abetter strategy must be available. The information needed to be able to use alternative strategies may
not be available (for instance, a list of attribute values and weights for a weighted average strategy).

» The developer must believe that they are capable of performing the strategy.

14.5.2 Effects of time pressure

Research by Payne, Bettman, and Joht$Bfl,and others, has shown that there is a hierarchy of responses
for how people deal with time pressure:

1. They work faster.

2. If that fails, they may focus on a subset of the issues.

3. If that fails, they may change strategies (e.g., from alternative based to attribute based).
If the time pressure is on delivering a finished program, and testing has uncovered a fault that requires
changes to the code, then the weighting assigned to attributes is likely to be different than during initial
development. For instance, the risk of a particular code change impacting other parts of the program is

likely to be a highly weighted attribute, while maintainability issues are usually given a lower weighting as
deadlines approach.

June 16, 2005 v 1.0a 93

_ Introduction 14 Decision making

14.5.3 Effects of decision importance

Studies investigating at how people select decision-making strategies have found that increasing the benef
for making a correct decision, or having to make a decision that is irreversible, influences how rigorously a
strategy is applied, not which strategy is appféd.

The same coding construct can have a different perceived importance in different contexts. For instance
defining an object at file scope is often considered to be a more important decision than defining one in
block scope. The file scope declaration has more future consequences than the one in block scope.

An irreversible decision might be one that selects the parameter ordering in the declaration of a library
function. Once other developers have included calls to this function in their code, it can be almostimpossible
(high cost/low benefit) to change the parameter ordering.

14.5.4 Effects of training

A developer’s training in software development is often done using examples. Sample programs are usec
to demonstrate the solutions to small problems. As well as learning how different constructs behave, and
how they can be joined together to create programs, developers also learn what attributes are considered:
be important in source code. They learn the implicit information that is not written down in the text books.
Sources of implicit learning include the following:

¢ The translator used for writing class exercisé@dl.translators have their idiosyncrasies and beginners
are not sophisticated enough to distinguish these from truly generic behavior. A developer’s first
translator usually colors his view of writing code for several years.

» Personal experiences during the first few months of trainifitnere are usually several different
alternatives for performing some operation. A bad experience (perhaps being unable to get a progran
that used a block scope array to work, but when the array was moved to file scope the program
worked) with some construct can lead to a belief that use of that construct was problem-prone and to
be avoided (all array objects being declared, by that developer, at file scope and never in block scope).

* Instructor biasesThe person teaching a class and marking submitted solutions will impart their own
views on what attributes are important. Efficiency of execution is an attribute that is often considered
to be important. Its actual importance, in most cases, has declined from being crucial 50 years ago
to being almost a nonissue today. There is also the technical interest factor in trying to write code
as efficiently as possible. A related attribute is program size. Praise is more often given for short
programs, rather than longer ones. There are applications where the size of the code is important
but generally time spent writing the shortest program is wasted (and may even be more difficult to
comprehend than a longer program).

» Consideration for other developer®evelopers are rarely given practical training on how to read
code, or how to write code that can easily be read by others. Developers generally believe that any
difficulty others experience in comprehending their code is not caused by how they wrote it.

» Preexisting behavior.Developers bring their existing beliefs and modes of working to writing C
source. These can range from behavior that is not software-specific, such as the inability to ignore
sunk costs (i.e., wanting to modify an existing piece of code, they wrote earlier, rather than throw it
away and starting again; although this does not seem to apply to throwing away code written by other
people), to the use of the idioms of another language when writing in C.

» Technically basedMost existing education and training in software development tends to be based
on purely technical issues. Economic issues are not usually raised formally, although informally
time-to-completion is recognized as an important issue.

Unfortunately, once most developers have learned an initial set of attribute values and weightings for source
code constructs, there is usually a long period of time before any subsequent major tuning or relearning

94 v 1.0a June 16, 2005

14 Decision making Introductiovm

takes place. Developers tend to be too busy applying their knowledge to question many of the underlying
assumptions they have picked up along the way.

Based on this background, it is to be expected that many developers will harbonaytesabout what
constitutes a good coding decision in certain circumstances. These coding guidelines cannot address all
coding myths. Where appropriate, coding myths commonly encountered by your author are discussed.

14.5.5 Having to justify decisions

Studies have found that having to justify a decision can affect the choice of decision-making strategy to bgstifying
used. For instance, Tetlock and Boettf&H found that subjects who were accountable for their decisions 9e¢isions
used a much wider range of information in making judgments. While taking more information into account

did not necessarily result in better decisions, it did mean that additional information that was both irrelevant

and relevant to the decision was taken into account.

It has been proposed, by Tverdki??! that the elimination-by-aspects heuristic is easy to justify. How-
ever, while use of this heuristic may make for easier justification, it need not make for more accurate
decisions.

A study performed by Simons8#?°! showed that subjects who had difficulty determining which alter-
native had the greatest utility tended to select the alternative that supported the best overall reasons (for
choosing it).

Tetlock'?8% included an accountability factor into decision-making theory. One strategy that handles
accountability as well as minimizing cognitive effort is to select the alternative that the perspective audience
(i.e., code review members) is thought most likely to select. Not knowing which alternative they are likely
to select can lead to a more flexible approach to strategies. The exception occurs when a person has already
made the decision; in this case the cognitive effort goes into defending that decision.

During a code review, a developer may have to justify why a particular decision was made. While
developers know that time limits will make it very unlikely that they will have to justify every decision, they
do not know in advance which decisions will have to be justified. In effect, the developer will feel the need
to be able to justify most decisions.

Requiring developers to justify why they have not followed a particular guideline recommendation can
be a two-edged sword. Developers can respond by deciding to blindly follow guidelines (the path of least
resistance), or they can invest effort in evaluating, and documenting, the different alternatives (not neces-
sarily a good thing since the invested effort may not be warranted by the expected benefits). The extent
to which some people will blindly obey authority was chillingly demonstrated in a number of studies by
Milgram [898]

14.6 Another theory about decision making

The theory that selection of a decision-making strategy is based on trading off cognitive effort and accuracy
is not the only theory that has been proposed. Hammond, Hamm, Grassia, and P8hpsoposed that an-

alytic decision making is only one end of a continuum; at the other end is intuition. They performed a study,
using highway engineers, involving three tasks. Each task was designed to have specific characteristics (see
Table 0.12). One task contained intuition-inducing characteristics, one analysis-inducing, and the third an
equal mixture of the two. For the problems studied, intuitive cognition outperformed analytical cognition

in terms of the empirical accuracy of the judgments.

June 16, 2005 v 1.0a 95

_ Introduction 15 Expertise

developer o

developer
intuition

expertise

flow

Table 0.12: Inducement of intuitive cognition and analytic cognition, by task conditions. Adapted from Hanif8hd.

Task Characteristic Intuition-Inducing State of Analysis-Inducing State of Task
Task Characteristic Characteristic

Number of cues Large (>5) Small

Measurement of cues Perceptual measurement Objective reliable measurement

Distribution of cue values Continuous highly variable Unknown distribution; cues are
distribution dichotomous; values are discrete

Redundancy among cues High redundancy Low redundancy

Decomposition of task Low High

Degree of certainty in task Low certainty High certainty

Relation between cues and criterion Linear Nonlinear

Weighting of cues in environmental model Equal Unequal

Availability of organizing principle Unavailable Available

Display of cues Simultaneous display Sequential display

Time period Brief Long

One of the conclusions that Hammond et al. drew from these results is that “Experts should increase their
awareness of the correspondence between task and cognition”. A task having intuition-inducing charactet
istics is most likely to be out carried using intuition, and similarly for analysis-inducing characteristics.

Many developers sometimes talk of writing code intuitively. Discussion of intuition and flow of con-
sciousness are often intermixed. The extent to which either intuitive or analytic decision making (if that
is how developers operate) is more cost effective, or practical, is beyond this author’s ability to even start
to answer. It is mentioned in this book because there is a bona fide theory that uses these concepts ar
developers sometimes also refer to them.

Intuition can be said to be characterized by rapid data processing, low cognitive control (the consistency
with which a judgment policy is applied), and low awareness of processing. Its opposite, analysis, is char-
acterized by slow data processing, high cognitive control, and high awareness of processing.

15 Expertise

People are referred to as being experts, in a particular domain, for several reasons, including:

» Well-established figures, perhaps holding a senior position with an organization heavily involved in
that domain.

 Better at performing a task than the average person on the street.
 Better at performing a task than most other people who can also perform that task.

« Self-proclaimed experts, who are willing to accept money from clients who are not willing to take
responsibility for proposing what needs to be d6AE.

Schneidét!®? defines a high-performance skill as one for which (1) more than 100 hours of training are
required, (2) substantial numbers of individuals fail to develop proficiency, and (3) the performance of an
expert is qualitatively different from that of the novice.

In this section, we are interested in why some people (the experts) are able to give a task performance
that is measurably better than a non-expert (who can also perform the task).

There are domains in which those acknowledged as experts do not perform significantly better than those
considered to be non-expeRt&] For instance, in typical cases the performance of medical experts was
not much greater than those of doctors after their first year of residency, although much larger differences
were seen for difficult cases. Are there domains where it is intrinsically not possible to become significantly
better than one’s peers, or are there other factors that can create a large performance difference betwee
expert and non-expert performances? One way to help answer this question is to look at domains where th
gap between expert and non-expert performance can be very large.

96 v 1.0a June 16, 2005

15 Expertise Introduction m

It is a commonly held belief that experts have some innate ability or capacity that enables them to do
what they do so well. Research over the last two decades has shown that while innate ability can be a factor
in performance (there do appear to be genetic factors associated with some athletic performances), the main
factor in acquiring expert performance is time sperdéfiberate practicé*tl

Studies of the backgrounds of recognized experts, in many fields, found that the elapsed time between
them starting out and carrying out their best work was at least 10 years, often with several hours of deliberate
practice every day of the year. For instance, Ericsson, Krampe, and Teschl#8rfmmd that, in a study
of violinists (a perceptual-motor task), by age 20 those at the top level had practiced for 10,000 hours, those
at the next level down 7,500 hours, and those at the lowest level of expertise had practiced for 5,000 hours.
They also found similar quantities of practice being needed to attain expert performance levels in purely
mental activities (e.g., chess).

Deliberate practice is different from simply performing the task. It requires that people monitor their
practice with full concentration and obtain feed@®k on what they are doing (often from a professional
teacher). It may also involve studying components of the skill in isolation, attempting to improve on partic-
ular aspects. The goal of this practice being to improve performance, not to produce a finished product.

People often learn a skill for some purpose (e.g., chess as a social activity, programming to get a job)
without the aim of achieving expert performance. Once a certain level of proficiency is achieved, they
stop trying to learn and concentrate on using what they have learned (in work, and sport, a distinction is
made between training for and performing the activity). During everyday work, the goal is to produce a
product or to provide a service. In these situations people need to use well-established methods, not try
new (potentially dead-end, or leading to failure) ideas to be certain of success. Time spent on this kind of
practice does not lead to any significant improvement in expertise, although people may become very fluent
in performing their particular subset of skills.

What of individual aptitudes? In the cases studied by researchers, the effects of aptitude, if there are any,
have been found to be completely overshadowed by differences in experience and deliberate practice times.
What makes a person willing to spend many hours, every day, studying to achieve expert performance is
open to debate. Does an initial aptitude or interest in a subject lead to praise from others (the path to
musical and chess expert performance often starts in childhood), which creates the atmosphere for learning,
or are other issues involved? IQ does correlate to performance during and immediately after training, but
the correlation reduces over the years. The IQ of experts has been found to be higher than the average
population at about the level of college students.

In many fields expertise is acquired by memorizing a huge amount of, domain-specific, knowledge and
having the ability to solve problems using pattern-based retrieval on this knowledge base. The knowledge
is structured in a form suitable for the kind of information retrieval needed for problems in a dSfkin.

A study by Carlson, Khoo, Yaure, and Schneftfél examined changes in problem-solving activity as
subjects acquired a skill (trouble shooting problems with a digital circuit). Subjects started knowing nothing,
were given training in the task, and then given 347 problems to solve (in 28 individual, two-hour sessions,
over a 15-week period). The results showed that subjects made rapid improvements in some areas (and little
thereafter), extended practice produced continuing improvement in some of the task components, subjects
acquired the ability to perform some secondary tasks in parallel, and transfer of skills to new digital circuits
was substantial but less than perfect. Even after 56 hours of practice, the performance of subjects continued
to show improvements and had not started to level off. Where are the limits to continued improvements? A
study of workers producing cigars by Crossihshowed performance improving according to the power
law of practice for the first five years of employment. Thereafter performance improvements slow; TAEH
cited for this slow down include approaching the speed limit of the equipment being used and the capability
of the musculature of the workers.

w of

15.1 Knowledge

A distinction is often made between different kinds of knowledge. Declarative knowledge are the factseveloper
procedural knowledge are the skills (the ability to perform learned actions). Implicit memory is defined d§°“ledde

June 16, 2005 v 1.0a 97

_ Introduction 15 Expertise

emmiet® memory without conscious awareness— it might be considered a kind of knowledge.

15.1.1 Declarative knowledge

declarative know- This consists of knowledge about facts and events. For instance, the keywords used to denote the intege
edge types arechar, short, int, andlong. This kind of knowledge is usually explicit (we know what we
know), but there are situations where it can be implicit (we make use of knowledge that we are not aware of
having®'%l). The coding guideline recommendations in this book have the form of declarative knowledge.

It is the connections and relationships between the individual facts, for instance the relative sizes of
the integer types, that differentiate experts from novices (who might know the same facts). This kind of
knowledge is rather like web pages on the Internet; the links between different pages corresponding to the
connections between facts made by experts. Learning a subject is more about organizing information anc
creating connections between different items than it is about remembering information in a rotelike fashion.

This was demonstrated in a study by McKeithen, Reitman, Ruster, and Efittleyho showed that
developers with greater experience with a language organized their knowledge of language keywords in ¢
more structured fashion. Education can provide the list of facts, it is experience that provides the connections
between them.

The termknowledge basés sometimes used to describe a collection of information and links about a
given topic. The C Standard document is a knowledge base. Your author has a C knowledge base in hi
head, as do you the reader. This book is another knowledge base dealing with C. The difference betweel
this book and the C Standard document is that it contains significantly more explicit links connecting items,
and it also contains information on how the language is commonly implemented and used.

15.1.2 Procedural knowledge
procedural knowl- This consists of knowledge about how to perform a task; it is often implicit.
edge Knowledge can start off by being purely declarative and, through extensive practice, becomes procedural
for instance, the process of learning to drive a car.

An experiment by Sweller, Mawer, and W&r§8! showed how subjects’ behavior during mathematical
problem solving changed as they became more proficient. This suggested that some aspects of what the
were doing had been proceduralized.

developer o There are various aspects of writing source code that can become proceduralized.

flow
automa- o

tization 15,2 Education
developer What effect does education have on people who go on to become software developers?
education

Page 206 of Hol- Education should not be thought of as replacing the rules that people use for understanding the world but
land et al*®! rather as introducing new rules that enter into competition with the old ones. People reliably distort the new
rules in the direction of the old ones, or ignore them altogether except in the highly specific domains in which

they were taught.

Education can be thought of as trying to do two things (of interest to us here)— teach students skills (pro-
cedural knowledge) and providing them with information, considered important in the relevant field, to
memorize (declarative knowledge). To what extent does education in subjects not related to software deve
opment affect a developer’s ability to write software?

Some subjects that are taught to students are claimed to teach general reasoning skills; for instance
philosophy and logic. There are also subjects that require students to use specific reasoning skills, fol
instance statistics requires students to think probabilistically. Does attending courses on these subject
actually have any measurable effect on students’ capabilities, other than being able to answer question
in an exam. That is, having acquired some skill in using a particular system of reasoning, do students
apply it outside of the domain in which they learnt it? Existing studies have supph&daaswer to this
question®86.971 This No was even found to apply to specific skills; for instance, statistics (unless the
problem explicitly involves statistical thinking within the applicable domain) and IB¢fit.

98 v 1.0a June 16, 2005

15 Expertise Introduction m

A study by Lehman, Lempert, and NisB&tt! measured changes in students’ statistical, methodological,
and conditional reasoning abilities (about everyday-life events) between their first and third years. They
found that both psychology and medical training produced large effects on statistical and methodological
reasoning, while psychology, medical, and law training produced effects on the ability to perform condi-
tional reasoning. Training in chemistry had no affect on the types of reasoning studied. An examination
of the skills taught to students studying in these fields showed that they correlated with improvements in
the specific types of reasoning abilities measured. The extent to which these reasoning skills transferred to
situations that were not everyday-life events was not measured. Many studies have found that inog(éi{ésrfa,lher
people do not transfer what they have learned from one domain to another. o

It might be said that passing through the various stages of the education process is more like a filter than a
learning exercise. Those that already have the abilities being the ones that dtidékeadvell-argued call
to arms to improve students’ general reasoning skills, through education, is provided by van'&¥ider.

Good education aims to provide students with an overview of a subject, listing the principles and major
issues involved; there may be specific cases covered by way of examples. Software development does
require knowledge of general principles, but most of the work involves a lot of specific details: specific to
the application, the language used, and any existing source code, while developers may have been introduced
to the C language as part of their education. The amount of exposure is unlikely to have been sufficient for
the building of any significant knowledge base about the language.

15.2.1 Learned skills

Education provides students wikkarned knowledgewhich relates to the title of this subsectimarned

skills. Learning a skill takes practice. Time spent by students during formal education practicin@;ﬁxﬁ‘fgﬂ'?er
programming skills is likely to total less than 60 hours. Six months into their first development job they
could very well have more than 600 hours of experience. Although students are unlikely to complete their
education with a lot of programming experience, they are likely to continue using the programming beliefs
and practices they have acquired. It is not the intent of this book to decry the general lack of good software
development training, but simply to point out that many developers have not had the opportunity to acquire
good habits, making the use of coding guidelines even more essential.

Can students be taught in a way that improves their general reasoning skills? This question is not directly
relevant to the subject of this book; but given the previous discussion, it is one that many developers will be
asking. Based on the limited researched carried out to date the answer seems to be yes. Learning requires
intense, quality practice. This would be very expensive to provide using human teachers, and researchers
are looking at automating some of the process. Several automated training aids have been produced to help
improve students’ reasoning ability and some seem to have a measurablé#ffect.

15.2.2 Cultural skills

Nisbett and Norenzay&! provide an overview of culture and cognition. A more practical guide to cultural
differences and communicating with people from different cultures, from the perspective of US culture, is
provided by Wise, Hannaman, Kozumplik, Franke, and Le&¢&4.

787 developer

Cultural skills include the use of language and category formation. language and
culture
. o catego-
15.3 Creating experts rization

cultural differ-

To become an expert a person needs motivation, time, economic resources, an established body of*knowl-
edge to learn from, and teachers to guide.

One motivation is to be the best, as in chess and violin playing. This creates the need to practice as much
as others at that level. Ericsson folfi§¥l that four hours per day was the maximum concentrated training
that people could sustain without leading to exhaustion and burnout. If this is the level of commitment,
over a 10-year period, that those at the top have undertaken, then anybody wishing to become their equal
will have to be equally committed. The quantity of practice needed to equal expert performance in less
competitive fields may be less. One should ask of an expert whether they attained that title because they are
simply as good as the best, or because their performance is significantly better than non-experts.

June 16, 2005 v 1.0a 99

_ Introduction 15 Expertise

expertise

transfer to an-

other domain

software de-
velopment
expertise

In many domains people start young, between three and eight in somé3€Hs€keir parents interest
being critical in providing equipment, transport to practice sessions, and the general environment in which
to study.

An established body of knowledge to learn from requires that the domain itself be in existence and
relatively stable for a long period of time. The availability of teachers requires a domain that has existed
long enough for them to have come up through the ranks; and one where there are sufficient people intereste
in it that it is possible to make as least as much from teaching as from performing the task.

The domains in which the performance of experts was not significantly greater than non-experts lacked
one or more of these characteristics.

15.3.1 Transfer of expertise to different domains

Research has shown that expertise within one domain does not confer any additional skills within another
domaini®3 This finding has been found for experts in real-world domains, such as chess, and in laboratory-
created situations. In one series of experiments, subjects who had practiced the learning of sequences
digits (after 50—100 hours of practice they could commit to memory, and recall later, sequences containing
more than 20 digits) could not transfer their expertise to learning sequences of othdfitéms.

15.4 Expertise as mental set

Software development is a new field that is still evolving at a rapid rate. Most of the fields in which expert
performance has been studied are much older, with accepted bodies of knowledge, established tradition
and methods of teaching.

Sometimes knowledge associated with software development does not change wholesale. There can &
small changes within a given domain; for instance, the move from K&R C to ISO C.

In a series of experiments Wil&y*? showed that in some cases non-experts could outperform experts
within their domain. She showed that an expert’s domain knowledge can act as a mental set that limits the
search for a solution; the expert becomes fixated within the domain. Also, in cases where a new task doe:
not fit the pattern of highly proceduralized behaviors of an expert, a novice’s performance may be higher.

15.5 Software development expertise

Given the observation that in some domains the acknowledged experts do not perform significantly better
than non-experts, we need to ask if it is possible that any significant performance difference could exist
in software development. Stewart and Lt&K! proposed a model of performance that involves seven
components. The following discussion breaks down expertise in software development into five major
areas.

1. Knowledge (declarative) of application domaiilthough there are acknowledged experts in a wide
variety of established application domains, there are also domains that are new and still evolving
rapidly. The use to which application expertise, if it exists, can be put varies from high-level design
to low-level algorithmic issues (i.e., knowing that certain cases are rare in practice when tuning a
time-critical section of code).

2. Knowledge (declarative) of algorithms and general coding techniqlibsre exists a large body of
well-established, easily accessible, published literature about algorithms. While some books dealing
with general coding techniques have been published, they are usually limited to specific languages
application domains (e.g., embedded systems), and often particular language implementations. An
important issue is the rigor with which some of the coding techniques have been verified; it often
leaves a lot to be desired, including the level of expertise of the author.

3. Knowledge (declarative) of programming languagehe C programming language is regarded as
an established language. Whether 25 years is sufficient for a programming language to achieve the
status of being established, as measured by other domains, is an open question. There is a definitiv
document, the ISO Standard, that specifies the language. However, the sales volume of this documer
has been extremely low, and most of the authors of books claiming to teach C do not appear to have

100 v 1.0a June 16, 2005

15 Expertise Introduction m

read the standard. Given this background, we cannot expect any established community of expertise
in the C language to be very large.

4. Ability (procedural knowledge) to comprehend and write language statements and declarations that
implement algorithmsProcedural knowledge is acquired through practice. While university students
may have had access to computers since the 1970s, access for younger people did not start to occur
until the mid 1980s. It is possible for developers to have had 10 years of software development
practice.

5. Development environmerthe development environment in which people have to work is constantly
changing. New versions of operating systems are being introduced every few years; new technologies
are being created and old ones are made obsolete. The need to keep up with development is a drain
on resources, both in intellectual effort and in time. An environment in which there is a rapid turnover
in applicable knowledge and skills counts against the creation of expertise.

Although the information and equipment needed to achieve a high-level of expertise might be available,
there are several components missing. The motivation to become the best software developer may exist
in some individuals, but there is no recognized measure of Wbstimeans. Without the measuring and
scoring of performances it is not possible for people to monitor their progress, or for their efforts to be
rewarded. While there is a demand for teachers, it is possible for those with even a modicum of ability
to make substantial amounts of money doing (not teaching) development work. The incentives for good
teachers are very poor.

Given this situation we would not expect to find large performance differences in software developers
through training. If training is insufficient to significantly differentiate developers the only other factor is
individual ability. It is certainly your author’s experience— individual ability is a significant factor in a
developer’s performance.

Until the rate of change in general software development slows down, and the demand for developers
falls below the number of competent people available, it is likely that ability will continue to the dominant
factor (over training) in developer performance.

15.6 Software developer expertise

Having looked at expertise in general and the potential of the software development domain to have expetiseloper
we need to ask how expertise might be measured in people who develop software. Unfortunately, thef&erse
are no reliable methods for measuring software development expertise currently available. However, based

on the previously discussed issues, we can isolate the following technical competencies (social competen-
cies®4 are not covered here, although they are among the skills sought by empféyarsj software

developers have their own opinid#¥: 1213):

» Knowledge (declarative) of application domain.
« Knowledge (declarative) of algorithms and general coding techniques.
* Knowledge (declarative) of programming languages.

 Cognitive ability (procedural knowledge) to comprehend and write language statements and declara-
tions that implement algorithms (a specialized form of general analytical and conceptual thinking).

» Knowledge (metacognitive) about knowledge (i.e., judging the quality and quantity of ones expertise).

Your author has firsthand experience of people with expertise individually within each of these components,
while being non-experts in any of the others. People with application-domain expertise and little program-
ming knowledge or skill are relatively common. Your author once implemented the semantics phase for
a compiler for CHILL (Communications High Level Language) and acquired expert knowledge in the se-

mantics of that language. One day he was shocked to find he could not write a CHILL program without

reference to some existing source code€foeshhis memory of general program syntax); he had acquired

June 16, 2005 v1.0a 101

_ Introduction 15 Expertise

an extensive knowledge based on the semantics of the language designed to answer verbally presented qu
tions, but did not have the procedural knowledge needed to write a program (the compiler was written in
another languagé)®

A developer’s knowledge of an application domain can only be measured using the norms of that domain.
One major problem associated with measuring overall developer expertise is caused by the fact that differen
developers are likely to be working within different domains. This makes it difficult to cross correlate
measurements.

A study at Bell Lab8?Y showed that developers who had worked on previous releases of a project
were much more productive than developers new to a project. They divided time spent by developers into
discovery time (finding out information) and work time (doing useful work). New project members spent
60% to 80% of their time in discovery and 20% to 40% doing useful work. Developers experienced with the
application spent 20% of their time in discovery and 80% doing useful work. The results showed a dramatic
increase in efficiency (useful work divided by total effort) from having been involved in one project cycle
and less dramatic an increase from having been involved in more than one release cycle. The study did nc
attempt to separate out the kinds of information being sought during discovery.

Another study at Bell Lab¥®! found that the probability of a fault being introduced into an application,
during an update, correlated with the experience of the developer doing the work. More experienced devel
opers seemed to have acquired some form of expertise in an application that meant they were less likely t
introduce a fault into it.

A study of development and maintenance costs of programs written in C aftf®daund no correla-
tion between salary grade (or employee rating) and rate of bug fix/add feature rate.

Your author,s experience is that developers’ general knowledge of algorithms (in terms of knowing those
published in well-known text-books) is poor. There is still a strongly held view, by developers, that it is
permissible for them to invent their own ways of doing things. This issue is only of immediate concern to
these coding guidelines as part of the widely held, developers’, belief that they should be given a free hand
to write source as they see fit.

There is a group of people who might be expected to be experts in a particular programming languages—
those who have written a compiler for it (or to be exact those who implemented the semantics phase of
the compiler, anybody working on others parts [e.g., code generation] does not need to acquire detailec
knowledge of the language semantics). Your author knows a few people who are C language experts an
have not written a compiler for that language. Based on your author’s experience of implementing several
compilers, the amount of study needed to be rated as an expert in one computer language is approximatel
3 to 4 hours per day (not even compiler writers get to study the language for every hour of the working day;
there are always other things that need to be attended to) for a year. During that period, every sentence in th
language specification will be read and analyzed in detail several times, often in discussion with colleagues
Generally developer knowledge of the language they write in is limited to the subset they learned during
initial training, perhaps with some additional constructs learned while reading other developers’ source or
talking to other members of a project. The behavior of the particular compiler they use also colors their
view of those constructs.

Expertise in the act of comprehending and writing software is hard to separate from knowledge of the
application domain. There is rarely any need to understand a program without reference to the applicatior
domain it was written for. When computers were centrally controlled, before the arrival of desktop com-
puters, many organizations offered a programming support group. These support groups were places wher
customers of the central computer (usually employees of the company or staff at a university) could take
programs they were experiencing problems with. The staff of such support groups were presented with a
range of different programs for which they usually had little application-domain knowledge. This environ-

0-6As a compiler writer, your author is sometimes asked to help fix problems in programs written in languages he has never seen
before (how can one be so expert and not know every language?). He now claims to be an expert at comprehending programs writte
in unknown languages for application domains he knows nothing about (he is helped by the fact that few languages have any truly
unique constructs).

102 v 1.0a June 16, 2005

15 Expertise Introduction m

ment was ideal for developing program comprehension skills without the need for application knowledge
(your author used to take pride in knowing as little as possible about the application while debugging the
presented programs). Such support groups have now been reduced to helping customers solve problems
with packaged software. Environments in which pure program-understanding skills can be learned now
seem to have vanished.

What developers do is discussed elsewhere. An expert developer could be defined as a persSfefiiEes,
able to perform these tasks better than the majority of their peers. Such a definition is open-ended (how is
betterdefined for these tasks?) and difficult to measure. In practice, it is productivity that is the sought-after
attribute in developers. oproductivity

Some studies have looked at how developers differ i (which need not be the same as measuring expertise),
including their:

- o developers
« ability to remember more about source code they have seen, orgarized knoni

edge

« personality differences, o developer

personality

» knowledge of the computer language used, and

« ability to estimate the effort needed to implement the specified functiorffity.

A study by Jgrgensen and Sjeb&tg looked at maintenance tasks (median effort 16-work hours). They
found that developers’ skill in predicting maintenance problems improved during their first two years on the
job; thereafter there was no correlation between increased experience (average of 7.7 years' development
experience, 3.4 years on maintenance of the application) and increased skill. They attributed this lack of
improvement in skill to a lack of learning opportunities (in the sense of deliberate practice and feedback on
the quality of their work).

Job advertisements often specify that a minimum number of years of experience is required. Number of
years is known not to be a measure of expertise, but it provides some degree of comfort that a person has
had to deal with many of the problems that might occur within a given domain.

15.6.1 Is software expertise worth acquiring?
Most developers are not professional programmers any more than they are professional typists. Reading and
writing software is one aspect of their job. The various demands on their time is such that most spend a small
portion of their time writing software. Developers need to balance the cost of spending time becoming more
skillful programmers against the benefits of possessing that skill. Experience has shown that software can
be written by relatively unskilled developers. One consequence of this is that few developers ever become
experts in any computer language.

When estimating benefits over a relatively short period of time, time spent learning more about the
application domain frequently serves one than honing programming skills.

15.7 Coding style

As an Englishman, your author can listen to somebody talking and tell if they are French, Germagydfdigridelines
tralian, or one of many other nationalities (and sometimes what part of England they were brought up fA§"? s
From what they say, | might make an educated guess about their educational level. From their use of words

like cool, groovy, and so on, | might guess age and past influences (young or aging hippy).

Source code written by an experienced developer sometimes has a recognizable style. Your authos®aa code
often tell if a developer’s previous language was Fortran, Pascal, or Basic. But he cannot tell if their previous accent
language was Lisp or APL (anymore than he can distinguish regional US accents, nor can many US citizens
tell the difference among an English, Scottish, Irish, or Australian accent), because he has not had enough
exposure to those languages.

Is coding style a form of expertise (a coherent framework that developers use to express their thoughts),
or is it a ragbag of habits that developers happen to have?

June 16, 2005 v1.0a 103

_ Introduction 16 Human characteristics

Programs have been written that can accurately (up to 73% has been réffdyidetermine the author-
ship of C source code. These experiments used, in part, source code written by people new to software
development (students). Later work using neural netWtfsvas able to get the error rate down to 2%.
That it was possible to distinguish programs written by very inexperienced developers suggests that style
might simply be a ragbag of habits (these developers not having had time to put together a coherent way o
writing source).

The styles used by inexperienced developers can even be detected after an attempt has been made to hi
the original authorship of the source. Plagiarism is a persistent problem in many universities’ programming
courses and several tools have been produced that automatically detect source code pl&§farispss.

One way for a developer to show mastery of coding styles would be to have the ability to write source
using a variety of different styles, perhaps even imitating the style of others. The existing author analysis
tools are being used to verify that different, recognizable styles were being used.

It was once thought (and still is by some people) that there is a correct way to speak. Received Pronunci
ation (as spoken on the BBC many years ago) was once promoted as correct usage within the UK.

Similarly, many people believe that source code can be written in a good style or a bad style. A consid-
erable amount of time has been, and will probably continue to be, spent discussing this issue. Your authors
position is the following:

« Identifiable source code styles exist.
* Itis possible for people to learn new coding styles.
* Itis very difficult to explain style to non-expert developers.

 Learning a new style is sufficiently time-consuming, and the benefits are likely to be sufficiently small,
that a developer is best advised to invest effort elsewhere.

Students of English literature learn how to recognize writing styles. There are many more important issues
that developers need to learn before they reach the stage where learning about stylistic issues become
worthwhile.
The phrase coding guidelines and coding style are sometimes thought of, by developers of as being
_ synonymous. This unfortunate situation has led to coding guidelines acquiring a poor reputation. While
coding o
guidelines recognizing the coding style does exist, they are not the subject of these coding guidelines. The term
nedten existing practiceefers to the kinds of constructs often found in existing programs. Existing practice is dealt

with as an issue in its own right, independent of any concept of style.

16 Human characteristics
human character- Humans are not ideal machines, an assertion may sound obvious. However, while imperfections in physica
isties characteristics are accepted, any suggestion that the mind does not operate according to the laws of mat
ematical logic is rarely treated in the same forgiving way. For instance, optical illusions are accepted as
curious anomalies of the eye/brain system; there is no rush to conclude that human eyesight is faulty.
Optical illusions are often the result of preferential biases in the processing of visual inputs that, in most
cases, are beneficial (in that they simplify the processing of ecologically common inputs). In Figure 0.19,
which of the two squares indicated by the arrows is the brighter one? Readers can verify that the indicatec
squares have exactly the same grayscale level. Use a piece of paper containing two holes, that display onl
the two squares pointed to.
This effect is not caused by low-level processing, by the brain, of the input from the optic nerve; it is
caused by high-level processing of the scene (recognizing the recurring pattern and that some squares a
within a shadow). Anomalies caused by this high-level processing are not limited to grayscales. The brain
is thought to have specific areas dedicated to the processing of faces. The, sortaltelder illusionis an
example of this special processing of faces. The two faces in Figure 0.20 look very different; turn the page
upside down and they look almost identical.

104 v 1.0a June 16, 2005

16 Human characteristics Introductiom

»

S 4

Figure 0.19: Checker shadow (by Edward Adelsoglrp 2dngiea Leysct fue 296 guwonug o} 1ApL (fU12 cIU pe AeLIIeq pA
conelud 9| o 2dngLee 6xceby fU6 [MO 1UQICII6q)' Prif U6 PrIgU Aleng] 2A2fell g2eldue 9 Le|giine pudpiuee22 [ugf 12
couzI2[elf Mifl (U6 clecKel baely

Figure 0.20: The Thatcher illusion. With permission from Thompg&#?2! The facial images look very similar when viewed
in one orientation and very different when viewed in another (turn page upside down).

June 16, 2005 v1.0a 105

_ Introduction 16 Human characteristics

evolutionary o
psychology

Music is another input stimulus that depends on specific sensory input/brain affects occurring. There
is no claim that humans cannot hear properly, or that they should listen to music derived purely from
mathematical principles.

Studies have uncovered situations where the behavior of human cognitive processes does not correspor
to some generally accepted norm, such as Bayesian inference. However, it cannot be assumed that cognitiv
limitations are an adaption to handle the physical limitations of the brain. There is evidence to suggest
that some of these so-called cognitive limitations provide near optimal solutions for some real-world prob-
lems!®52

The ability to read, write, and perform complex mathematical reasoning are very recent (compared to sev
eral million years of evolution) cognitive skill requirements. Furthermore, there is no evidence to suggest
that possessing these skills improves the chances of a person passing on their genes to subsequent gen
tions (in fact one recent trend suggests othen#&8). So we should not expect human cognitive processes
to be tuned for performing these activities.

Table 0.13 lists some of the cognitive anomalies (difference between human behavior and some idealizec
norm) applicable to writing software. There are other cognitive anomalies, some of which may also be
applicable, and others that have limited applicability; for instance, writing software is a private, not a social
activity. Cognitive anomalies relating to herd behavior and conformity to social norms are unlikely to be of
interest.

106 v 1.0a June 16, 2005

16 Human characteristics

Introductiom

Table 0.13: Cognitive anomalies. Adapted from McFaddef?]

Effect Description

CONTEXT

Anchoring Judgments are influenced by quantitative cues contained in the statement of the
decision task

Context Prior choices and available options in the decision task influence perception and
motivation

Framing Selection between mathematically equivalent solutions to a problem depends on
how their outcome is framed.

Prominence The format in which a decision task is stated influences the weight given to different

REFERENCE POINT
Risk asymmetry

Reference point
Endowment

developers are loath to
throw it away and start

aspects

Subjects show risk-aversion for gains, risk-preference for losses, and weigh losses
more heavily

Choices are evaluated in terms of changes from an endowment or status quo point
Possessed goods are valued more highly than those not possessed; once a function
has been written

again

AVAILABILITY

Availability Responses rely too heavily on readily retrievable information and too little on back-
ground information

Certainty Sure outcomes are given more weight than uncertain outcomes

Experience Personal history is favored relative to alternatives not experienced

Focal Quantitative information is retrieved or reported categorically

Isolation The elements of a multiple-part or multi-stage lottery are evaluated separately

Primacy and Recency Initial and recently experienced events are the most easily recalled

Regression Idiosyncratic causes are attached to past fluctuations, and regression to the mean is
underestimated

Representativeness High conditional probabilities induce overestimates of unconditional probabilities

Segregation Lotteries are decomposed into a sure outcome and a gamble relative to this sure
outcome

SUPERSTITION

Credulity Evidence that supports patterns and causal explanations for coincidences is ac-
cepted too readily

Disjunctive Consumers fail to reason through or accept the logical consequences of actions

Superstition Causal structures are attached to coincidences, and "quasi-magical" powers to op-
ponents

Suspicion Consumers mistrust offers and question the motives of opponents, particularly in
unfamiliar situations

PROCESS

Rule-Driven Behavior is guided by principles, analogies, and exemplars rather than utilitarian
calculus

Process Evaluation of outcomes is sensitive to process and change

Temporal Time discounting is temporally inconsistent, with short delays discounted too sharply
relative to long delays

PROJECTION

Misrepresentation Subjects may misrepresent judgments for real or perceived strategic advantage

Projection Judgments are altered to reinforce internally or project to others a self-image

16.1 Physical characteristics

Before moving on to the main theme of this discussion, something needs to be said about physical charageloper
teristics physical char-
: acteristics

The brain is the processor that the software of the mind executes on. Just as silicon-based processors
have special units that software can make use of (e.g., floating point), the brain appears to have special areas
that perform specific functiori$24°l This book treats the workings of the brain/mind combination as a black

box. We are only interested in the outputs, not the inner workings (brain-imaging technology has not yet

June 16, 2005 v1.0a 107

_ Introduction 16 Human characteristics

reached the stage where we can deduce functionality by watching the signals traveling along neurons).

Eyes are the primary information-gathering sensors for reading and writing software. A lot of research
has been undertaken on how the eyes operate and interface with th&®thise of other information-
gathering sensors has been proposed, hearing being the most common (both spoken and$fijsical
These are rarely used in practice, and they are not discussed further in this book.

_ Hands/fingers are the primary output-generation mechanism. A lot of research on the operation of limbs
miopn9™ has been undertaken. The impact of typing on error rate is discussed elsewhere.

Developers are assumed to be physically mature (we do not deal with code written by children or ado-
lescents) and not to have any physical (e.g., the impact of dyslexia on reading source code is not known
another unknown is the impact of deafness on a developer’s ability to abbreviate identifiers based on theit
sound) psychiatric problems.

Issues such as genetic differences (e.g., male vs. féff@eor physical changes in the brain caused by
repeated use of some functional unit (e.g., changes in the hippocampi of taxi&#f)ease not considered
here.

16.2 Mental characteristics

developer This section provides an overview of those mental characteristics that might be considered important in read
{gﬁg{g'ﬁchafac- ing and writing software. Memory, particularly short-term memory, is an essential ability. It might almost
avirer . be covered under physical characteristics, but knowledge of its workings has not quite yet reached that leve
of understanding. An overview of the characteristics of memory is given in the following subsection. The
consequences of these characteristics are discussed throughout the book.

The idealization of developers aspiring to be omnipotent logicians gets in the way of realistically ap-
proaching the subject of how best to make use of the abilities of the human mind. Completely rational,
logical, and calculating thought may be considered to be the ideal tools for software development, but they
are not what people have available in their heads. Builders of bridges do not bemoan the lack of unbreakable
materials available to them, they have learned how to work within the limitations of the materials available.
This same approach is taken in this book, work with what is available.

This overview is intended to provide background rationale for the selection of, some, coding guidelines.
In some cases, this results in recommendations against the use of constructs that people are likely to hav
problems processing correctly. In other cases this results in recommendations to do things in a particu
lar way. These recommendations could be based on, for instance, capacity limitations, biases/heuristic:
(depending on the point of view), or some other cognitive factors.

Some commentators recommend that ideal developer characteristics should be promoted (such ideals a
often accompanied by a list of tips suggesting activities to perform to help achieve these characteristics
rather like pumping iron to build muscle). This book contains no exhortations to try harder, or tips on how
to become better developers through mental exercises. In this book developers are taken as they are, n
some idealized vision of how they should be.

Hopefully the reader will recognize some of the characteristics described here in themselves. The way
forward is to learn to deal with these characteristics, not to try to change what could turn out to be intrinsic
properties of the human brain/mind.

Software development is not the only profession for which the perceived attributes of practitioners do not
correspond to reality. Darley and Bat§89f performed a study in which they asked subjects (theological
seminary students) to walk across campus to deliver a sermon. Some of the subjects were told that the
were late and the audience was waiting, the remainder were not told this. Their journey took them past a
victim moaning for help in a doorway. Only 10% of subjects who thought they were late stopped to help
the victim; of the other subjects 63% stopped to help. These results do not match the generally perceivec
behavior pattern of theological seminary students.

Most organizations do not attempt to measure mental characteristics in developer job applicants; unlike
many other jobs for which individual performance can be an important consideration. Whether this is
because of an existing culture of not measuring, lack of reliable measuring procedures, or fear of frightening

108 v 1.0a June 16, 2005

16 Human characteristics Introductiom

off prospective employees is not known.

16.2.1 Computational power of the brain

One commonly used method of measuring the performance of silicon-based processors is to quote the nuétoper
ber of instructions (measured in millions) they can execute in a second. This is known to be an inaccEﬂ‘&’ﬂé‘a,}g’Jv‘gr'
measure, but it provides an estimate.

The brain might simply be a very large neural net, so there will be no instructions to count as such.
Merklel®% uysed various approaches to estimate the number of synaptic operations per second; the follow-

ings figures are taken from his article:

 Multiplying the number of synapses3('®) by their speed of operation (about 10 impulses/second)
gives10'® synapse operations per second.

« The retina of the eye performs an estimatéd® analog add operations per second. The brain con-
tains 102 to 10* times as many nerve cells as the retina, suggesting that it can perfidfno 1014
operations per second.

« A total brain power dissipation of 25 watts (an estimated 10 watts of useful work) and an estimated
energy consumption & 10~ joules for the switching of a nerve cell membrane provides an upper
limit of 2x10'> operations per second.

A synapse switching on and off is rather like a transistor switching on and off. They both need to be
connected to other switches to create a larger functional unit. It is not known how many synapses are
used to create functional units in the brain, or even what those functional units might be. The distance
between synapses is approximately 1 mm. Simply sending a signal from one part of the brain to another
part requires many synaptic operations, for instance, to travel from the front to the rear of the brain requires
at least 100 synaptic operations to propagate the signal. So the number of synaptic operations per high-level,
functional operation is likely to be high. Silicon-based processors can contain millions of transistors. The
potential number of transistor-switching operations per second might be greatadtabut the number

of instructions executed is significantly smaller.

Although there have been studies of the information-processing capacity of the brain (e.g., visual atten-
tion, 1358 storage rate into long-term memdfy and correlations between biological factors and intelli-
gencé3*), we are a long way from being able to deduce the likely work rates of the components of the
brain used during code comprehension. The issue of overloading the computational resources of the brain
is discussed elsewhere. ocognitive

There are several executable models of how various aspects of human cognitive processes operate. The
ACT-R model®! has been applied to a wide range of problems, including learning, the visual interface,
perception and action, cognitive arithmetic, and various deduction tasks.

Developers are familiar with the idea that a more powerful processor is likely to execute a program
more quickly than a less powerful one. Experience shows that some minds are quicker at solving some
problems than other minds and other problems (a correlation between what is kninspexdion timeand
IQ has been fourl#?®)). For these coding guidelines, speed of mental processing is not a problem in itself.
The problem of limited processing resources operating in a time-constrained environment, leading to errors
being made, could be handled if the errors were easily predicted. It is the fact that different developers have
ranges of different abilities that cause the practical problems. Developer A can have trouble understanding
the kinds of problems another developer, B, could have understanding the code he, A, has written. The
problem is how does a person, who finds a particular task easy, relate to the problems a person, who finds
that task difficult, will have?

The termintelligenceis often associated with performance ability (to carry out some action in a given
amount of time). There has been a great deal of debate about what intelligence is, and how it can be
measured. Gardré}! argues for the existence of at least six kinds of intelligence— bodily kinesthetic,
linguistic, mathematical, musical, personal, and spatial. Studies have shown that there can be dramatic

June 16, 2005 v1.0a 109

_ Introduction 16 Human characteristics

memory
developer

memory o
episodic

Ideali(?nal quepcy Number Computation
Naming Facility RT and Other Elementary Cognitive Tasks
Expression Fluency Stroop
Word Fluency Clerical Speed
) Creativity -~ Ideational / Digit Syrr?bol
Elgural Flugnpy Fluency Perceptual
Figural Flexibility Speed Verbal Comprehension

Lexical Knowledge

Memory Span Reading Comprehension

Ausociis Memocy
Meaningful Memory D Mea,l;((i)ry -— S(Pgé(l)lzilig
Visual Memory General > Crystallized > Phonetic Coding
. . ntelligence Intelligence Grammatical Sensitivity
Sequential Reasoning Fluid A/l Foreign Language
Inductive Reasoning g—— . Communication
. B Intelligence
Quantitative Reasoning Listening
Piagetian Reasoning Oral Production
) o Oral Style
Visualization . Knowledge Writing
Spatial Relations P VIS“?I and
) erception i
Closure Sp'ee'q - P Achievement General School Achievement
_ Closure Flexibility Verbal Information and Knowledge
Serial P ergeptual Integration Information and Knowledge, Math and Science
Spatial Scanning Technical and Mechanical Knowledge
Imagery Knowledge of Behavioral Content

Figure 0.21: A list of and structure of ability constructs. Adapted from Ackerrian.

differences between subjects rated high and low in these intelligences (ling8fiséind spatid®*el). Ack-

erman and Heggestddreview the evidence for overlapping traits between intelligence, personality, and
interests (see Figure 0.21). An extensive series of tests carried out by SU3, Oberauer, Wittmann, Wilhelm
and Schulzé261 found that intelligence was highly correlated to working memory capacity. The strongest
relationship was found for reasoning ability.

The failure of so-called intelligence tests to predict students’ job success on leaving college or university
is argued with devastating effect by McClellafitf] who makes the point that the best testing is criterion
sampling (for developers this would involve testing those attributes that distingefitnes# developers).

Until employers start to measure those employees who are involved in software development, and a theon
explaining how these relate to the problem of developing software-based applications is available, there is
little that can be said. At our current level of knowledge we can only say that developers having different
abilities may exhibit different failure modes when solving problems.

16.2.2 Memory

Studies have shown that memory appears to consist of two separate systems, commonly khovirtesn
memory(STM) andlong-term memor{LTM). The extent to which STM and LTM really are different mem-

ory systems, and not simply two ends of a continuum of memory properties, continues to be researched an
debated. Short-term memory tends to operate in terms of speech sounds and have a very limited capacit
while long-term memory tends to be semantic- or episodic-based and is often treated as having an infinite
capacity (a lifetime of memories is estimated to be representgeibits{’7Y this figure takes forgetting

into account).

There are two kinds of query that are made against the contents of memory. Peralba person
attempts to use information immediately available to them to access other information held in memaory.
During recognition a person decides whether they have an existing memory for information that is being
presented.

Much of the following discussion involves human memory performance with unchanging information.
Developers often have to deal with changing information (e.g., the source code may be changing on a daily
basis; the value of variables may be changing as developers run through the execution of code in thei

110 v 1.0a June 16, 2005

16 Human characteristics Introductiom

Visuo-spatial Central Phonological

sketch pad executive loop

Figure 0.22: Model of working memory. Adapted from BaddelEf!

heads). Human memory performance has some characteristics that are specific to dealing with changing
information!?8”] However, due to a lack of time and space, this aspect of developer memory performance is
not covered in any detail in this book.

As its name implies, STM is an area of memory that stores information for short periods of time. For Miller
more than 100 years researchers have been investigating the properties of STM. Early researchers started &
by trying to measure its capacity. A paper by Milfé?! entitted The magical number seven, plus or minus
two: Some limits on our capacity for processing informatiimtnoduced the now-famous 7+2 rule. Things
have moved on, during the 47 years since the publication of his B&Hpénot that Miller ever proposed
7+2 as the capacity of STM; he simply drew attention to the fact that this range of values fit the results of
several experiments).

Readers might like to try measuring their STM capacity. Any Chinese-speaking readers can try thismemory
exercise twice, using the English and Chinese words for the dfiéfts.Use of Chinese should enable ~ i9tspan
readers to apparently increase the capacity of STM (explanation follows). The digits in the outside margin
can be used. Slowly and steadily read the digits in a row, out loud. At the end of each row, close your eyes
and try to repeat the sequence of digits in the same order. If you make a mistake, go on to the next row. The
point at which you cannot correctly remember the digits in any two rows of a given length indicates your
capacity limit— the number of digits in the previous rows. 8704

Measuring working memory capacity using sequences of digits relies on several assumptions. It mes
that working memory treats all items the same way (what if letters of the alphabet had been used #agfgad),
and it also assumes that individual concepts are the unit of storage. Studies have shown that bothsthese
assumptions are incorrect. What the preceding exercise measured was the arsountipbu could keep'3619
in working memory. The sound used to represent digits in Chinese is shorter than in English. 'Fﬁ%éﬁ%e
of Chinese should enable readers to maintain information on more digits (aver&j8)8ing the sameso173
amount of sound storage. A reader using a language for which the sound of the digits is longer wasab t3e

able to maintain information on fewer digits (e.g., average 5.8 in Weéléh The average for English is 6. 6@3%22;}
Studies have shown that performance ondlgit spantask is not a good predictor of performance@@slg,og

other short- or long-term memory for items. However, a study by M&ffirfound that it did correlate witB1042963

memory for the temporal occurrence of events. g;gigggée
In the 1970s Baddeley asked what purpose short-term memory served. He reasoned that its purRRSgeMHS

to act as a temporary area for activities such as mental arithmetic, reasoning, and problem solvingL.s4bbe3
model ofworking memonhe proposed is shown in Figure 0.22. There are three components, each wifi3Gf3941

own independent temporary storage areas, each holding and using information in different ways. gggfgggig

What does the central executive do? It is assumed to be the system that handles attention, controlling
the phonological loop, the visuo-spatial sketch pad, and the interface to long-term memory. TheSeavrrags of sir
executive needs to remember information while performing tasks such as text comprehension and%ﬁ@l?o %rl‘éi'sn
solving. The potential role of this central executive is discussed elsewhere. |
o attention

June 16, 2005 v1.0a 111

16 Human characteristics

_ Introduction

visuo-spatial
memory

phonological loop

memory
span

26
12

Two numbers
to multiply.

Visual information held in the visuo-spatial sketch pad decays very rapidly. Experiments have shown
that people can recall four or five items immediately after they are presented with visual information, but
that this recall rate drops very quickly after a few seconds. From the source code reading point of view, the
visuo-spatial sketch pad is only operative for the source code currently being looked at.

While remembering digit sequences, readers may have noticed that the sounds used for them went arour
in their heads. Research has uncovered a system known as the phonological (or articulatory) loop. This kinc
of memory can be thought of as being like a loop of tape. Sounds can be recorded onto this tape, overwriting
the previous contents, as it goes around and around. An example of the functioning of this loop can be found
by trying to remember lists of words that vary by the length of time it takes to say them.

Table 0.14 contains lists of words; those at the top of the table contain a single syllable, those at the bottom
multiple syllables. Readers should have no problems remembering a sequence of five single-syllable word:
a sequence of five multi-syllable words should prove more difficult. As before, read each word slowly out
loud.

Table 0.14: Words with either one or more than one syllable (and thus varying in the length of time taken to speak).

List 1 List 2 List 3 List 4 List5

one cat card harm add

bank lift list bank mark

sit able inch view bar

kind held act fact few

look mean what time sum

ability basically encountered laboratory commitment
particular yesterday government acceptable minority
mathematical department financial university battery
categorize satisfied absolutely meaningful opportunity
inadequate beautiful together carefully accidental

It has been found that fast talkers have better short-term memory. The connection is the phonological
loop. Short-term memory is not limited by the number of items that can be held. The limit is the length of
sound this loop can store, about two secdfidsFaster talkers can represent more information in that two
seconds than those who do not talk as fast.

An analogy betweephonological loopand a loop of tape in a tape recorder, suggests the possibility that
it might only be possible to extract information as it goes pasta-out point A study by Sternbeftf3e!
looked at how information in the phonological loop could be accessed. Subjects were asked to hold a
sequences of digits, for instand@85, in memory. They were then asked if a particular digit was in the
sequence being held. The time taken to respond yes/no was measured. Subjects were given sequences
different length to hold in memory. The results showed that the larger the number of digits subjects had
to hold in memory, the longer it took them to reply (see Figure 0.23). The other result was that the time
to respond was not affected by whether the answer was yes or no. It might be expected that a yes answe
would enable the search to be terminated. This suggests that all digits were always being compared.

A study by Cavanadf* found that different kinds of information, held in memory, has different search
response times (see Figure 0.24).

A good example of using the different components of working memory is mental arithmetic; for example,
multiply 23 by 15 without looking at this page. The numbers to be multiplied can be held in the phonological
loop, while information such as carries and which two digits to multiple next can be held within the central
executive. Now perform another multiplication, but this time look at the two humbers being multiplied (see
margin for values) while performing the multiplication.

While performing this calculation the visuo-spatial sketch pad can be used to hold some of the informa-
tion, the values being multiplied. This frees up the phonological loop to hold temporary results, while the

112 v 1.0a June 16, 2005

16 Human characteristics

Introductiom

600 —{
g _ |
é 500 —|
£ 400—
=
,g — A Positive
§ 200 —| O Negative
g x Mean
] —
p=

1 2 3 4 5 6

Number of items

Figure 0.23: Judgment time (in milliseconds) as a function of the number of digits held in memory. Adapted from Stern-

berg!1238]

Processing time (msec/item)

nonsense syllables
random forms

0.1 0.2 0.3

Reciprocal of memory span (item'l)

Figure 0.24: Judgment time (msec per item) as a function of the number of different items held in memory. Adapted from

CavanagR%4

central executive holds positional information (used to decide which pairs of digits to look at). Carrying out
a multiplication while being able to look at the numbers being multiplied seems to require less cognitive

effort.

Recent research on working memory has begun to question whether it does have a capacity limit. Many
studies have shown that people tend to organize items in memory in chunks of around four items. The role
that attention plays in working memory, or rather the need for working memory in support of attention, has
also come to the fore. It has been suggested that the focus of attention is capacity-limited, but that thecotbrer
temporary storage areas are time-limited (without attention to rehearse them, they fade away)?*8owan

proposed the following:

1. The focus of attention is capacity-limited.
2. The limit in this focus averages about four chunks in normal adult humans.
3. No other mental faculties are capacity-limited, although some are limited by time and susceptibility

to interference.

4. Any information that is deliberately recalled, whether from a recent stimulus or from long-term mem-
ory, is restricted to this limit in the focus of attention.

Other studie€’® have used the results from multiple tasks to distinguish the roles (e.g., storage, processing,
supervision, and coordination) of different components of working memory.

June 16, 2005

v1.0a 113

_ Introduction 16 Human characteristics

memory
chunking

feeling of knowing

working memory
information repre-
sentation

Figure 0.25: Semantic memory representation of alphabetic letters (the Greek names assigned to nodes by Klahr are used by
the search algorithm and are not actually held in memory). Readers may recognize the structure of a nursery rhyme in the letter
sequences. Derived from KlaH%’]

Chunking is a technique commonly used by people to help them remember information. A chunk is
a small set of items (4+1 is seen in many studies) having a common, strong, association with each othel
(and a much weaker one to items in other chunks). For instance, Wickéf§tkiound that people’s recall
of telephone numbers is optimal if numbers are grouped into chunks of three digits. An example from
randome-letter sequencesfiscbsibmirs The trigramsfpi, cbs ibm, irs) within this sequence of 12 letters
are well-known acronyms. A person who notices this association can use it to aid recall. Several theoretical
analyses of memory organizations have shown that chunking of items improves search effiéf€hcy (
optimal chunk size 3-4)[&"®! number items at which chunking becomes more efficient than a single list,
5-7).

An example of chunking of information is provided by a study performed by Klahr, Chase, and Ld%élace
who investigated how subjects stored letters of the alphabet in memory. Through a series of time-to-responc
measurements, where subjects were asked to name the letter that appeared immediately before or after i
presented probe letter, they proposed the alphabet-storage structure shown in Figure 0.25. They also pr
posed two search algorithms that described the process subjects used to answer the before/after question

Until recently experimental studies of memory have been dominated by a quantity-oriented approach.
Memory was seen as a storehouse of information and is evaluated in terms of how many items could be
successfully retrieved. The issue of accuracy of response was often ignored. This has started to change ar
there has been a growing trend for studies to investigate acclitfdcgoding guidelines are much more
interested in factors that affect memory accuracy than those affecting rate of recall. Unfortunately, some of
the memory studies described in this book do not include information on error rates.

One of the characteristics of human memory is that it has knowledge of its own knowledge. People are
good at judging whether they know a piece of information or not, even if they are unable to recall that
information at a particular instant. Studies have found that so-cdkdohg of knowinds a good predictor
of subsequent recall of information (see Kdfi#d for a discussion and a model).

Several models of working memory are based on it only using a phonological representation of informa-
tion. Any semantic effects in short-term memory come from information recalled from long-term memory.
However, a few models of short-term memory do include a semantic representation of information (see
Miyake and Shaft% for detailed descriptions of all the current models of working memory, and Baddeley
for a comprehensive revié).

A study by Hambrick and EngRé®! asked subjects to remember information relating to baseball games.
The subjects were either young, middle age, or old adult who knew little about baseball or were very knowl-
edgeable about baseball. The largest factor (54.9%) in the variance of subject performance was expertis

114 v 1.0a June 16, 2005

16 Human characteristics Introductiom

Figure 0.26: One of the two pairs are rotated copies of each other.

with working memory capacity and age making up the difference.

Source code constructs differ in their likelihood of forming semantically meaningful chunks. For instance,
the ordering of a sequence of statements is often driven by the operations performed by those statements,
while the ordering of parameters is often arbitrary.

Declarative memory is a long-term memory (information may be held until a person dies) that has a hugenemory
capacity (its bounds are not yet known) and holds information on facts and events (declarative knowledge T8/
discussed elsewhere). Two components of declarative memory of interest to the discussion here are ggisadE>°"*
and semantic memory. Episodic meréHyis a past-oriented memory system concerned withembering <"°"'ed9e
while semantic memory is a present-oriented memory system concernekiwitiing

Having worked on a program, a developer may remember particular sections of source code through their
interaction with it (e.g., deducing how it interacted with other source code, or inserting traces to print out
values of objects referenced in the code). After working on the same program for an extended period of
time, a developer is likely to be able to recall information about it without being able to remember exactly
when they learned that informatiét{?!

16.2.2.1 Visual manipulation

How are visual images held in the brain? Are they stored directly in some way (like a bitmap), or are theyeveloper
held using an abstract representation (e.g., a list of objects tagged with their spatial positions). A stutfiasien
performed by Shepald”®! suggested the former. He showed subjects pairs of figures and asked them if
they were the same. Some pairs were different, while others were the same but had been rotated relative to
each other. The results showed a linear relationship between the angle of rotation (needed to verify that two
objects were the same) and the time taken to make a matching comparison. Readers might like to try there
mind at rotating the pairs of images in Figure 0.26 to find out if they are the same.

Kosslyrt’38] performed a related experiment. Subjects were shown various pictures and asked questions
about them. One picture was of a boat. Subjects were asked a question about the front of the boat and then
asked a question about the rear of the boat. The response time, when the question shifted from the front
to the rear of the boat, was longer than when the question shifted from one about portholes to one about
the rear. It was as if subjects had to scan their image of the boat from one place to another to answer the
questions.

A study by Presson and Montelté’4 asked two groups of subjects to memorize the locations of objects
in a room. Both groups of subjects were then blindfolded and asked to point to various objects. The results
showed their performance to be reasonably fast and accurate. Subjects in the first group were then asked
to imagine rotating themselves 90°, then they were asked to point to various objects. The results showed
their performance to be much slower and less accurate. Subjects in the second group were asked to actually
rotate 90°; while still blindfolded, they were then asked to point to various objects. The results showed that
the performance of these subjects was as good as before they rotated. These results suggest that mentally
keeping track of the locations of objects, a task that many cognitive psychologists would suspect as being

June 16, 2005 v1.0a 115

_ Introduction 16 Human characteristics

memory
information elabo-
ration

2.3 —|
0.5 — — X
— 1.8 —
; 03— = — x
o g 14—
E 02— g
g E 1
é_ 0.1— :g
& &
0.04 — 0.5
\ T T TTI \ T T TTI
1 3 5 7 1 3 5 7
Practice trials Practice trials

Figure 0.27: Proportion of errors (left) and time to recall (right) for recall of paired associate words. Based on Arld@rson.

cognitive and divorced from the body, is in fact strongly affected by literal body movements (this result is
more evidence fothe embodied mintheory*3°% of the human mind).

16.2.2.2 Longer term memories

People can store large amounts of information for long periods of time in their long-term memory. Lan-
dauel 7 attempts to estimate the total amount of learned information in LTM. Information written to LTM
may not be held there for very long (storage), or it may be difficult to find (retrieval). This section discusses
storage and retrieval of information in LTM.

One of the earliest memory research results was that practicing an item, after it had been learned, im
proves performance of recall at a later time (first published by Ebbinghaus in 1885, and reprinted several
times sinc&%Y). The relationship between practicg, and time,T’, to recall has been found to follow a
power lawT’ = aP® (wherea andb are constants). This relationship has become knovtheapower law
of learning A similar relationship has been found for error rates— more practice, fewer errors.

How is information stored in LTM? The brain contains neurons and synapses; information can only be
represented as some kind of change in their state. Thertermory traceas used to describe this changed
state, representing the stored information. Accessing an information item in LTM is thought to increase the
strength of its associatademory tracgwhich could mean that a stronger signal is returned by subsequent
attempts at recall, or that the access path to that information is smoothed; nobody knows yet).

Practice is not the only way of improving recall. How an item has been studied, and its related associa-
tions, can affect how well it is recalled later. The meaning of information to the person doing the learning,
so-calleddepth of processingan affect their recall performance. Learning information that has a meaning
is thought to create more access methods to its storage location(s) in LTM.

The generation effectefers to the process whereby people are involved in the generation of the infor-
mation they need to remember. A study by Slamecka and'&f&fsked subjects to generate a synonym,
or rhyme, of a target word that began with a specified letter. For instance, generate a synosga for
starting with the letteo (e.g.,ocear). The subjects who had to generate the associated word showed a
15% improvement in recall, compared to subjects who had simply been asked to read the word pair (e.g.
sea—ocean

An example of the effect of additional, meaningful information was provided by a study by Bradshaw
and Andersof*¢l Subjects were given information on famous people to remember. For instance, one group
of subjects was told:

116 v 1.0a June 16, 2005

16 Human characteristics Introductiom

Newton became emotionally unstable and insecure as a child

while other groups were given two additional facts to learn. These facts either elaborated on the first
sentence or were unrelated to it:

Newton became emotionally unstable and insecure as a child
Newton’s father died when he was born
Newton’s mother remarried and left him with his grandfather

After a delay of one week, subjects were tested on their ability to recall the target sentence. The results
showed that subjects percentage recall was higher when they had been given two additional sentences, that
elaborated on the first one (the performance of subjects given related sentences being better than those given
unrelated ones). There was no difference between subjects, when they were presented with the original
sentence and asked if they recognized it.

The preceding studies involved using information that had a verbal basis. A study by Standing, Conezio,
and Habéd?#??4 involved asking subjects to remember visual information. The subjects were shown 2,560
photographs for 10 seconds each (640 per day over a 4-day period). On each day, one hour after being
shown the pictures, subjects were shown a random sample of 70 pairs of pictures (one of which was in the
set of 640 seen earlier). They had to identify which of the pair they had seen before. Correct identification
exceeded 90%. This and other studies have confirmed people’s very good memory for pictures.

16.2.2.3 Serial order

The order in which items or events occur is often important when comprehending source code. For instanceemory
the ordering of a function’s parameters needs to be recalled when passing arguments, and the orderr%df' s
statements within the source code of a function specifies an order of events during program execution. Two

effects are commonly seem in human memory recall performance:

primacy effect
memory

recency effect
memory

1. Theprimacy effectefers to the better recall performance for items at the start of a list.
2. Therecency effectefers to the better recall performance for items at the end of a list.

A number of models have been proposed to explain people’s performance in the serial list recall task. Hen-
sorP*! describes thetart—-end model

16.2.2.4 Forgetting
While people are unhappy about the fact that they forget things, never forgetting anything may be worse. Th&getting
Russian mnemonist Shereshevskii found that his ability to remember everything, cluttered up H¥¥nind.
Having many similar, not recently used, pieces of information matching during a memory search would
be counterproductive; forgetting is a potentially useful adaptation. For instance, a driver returning to a
car wants to know where it was last parked, not the location of all previous places where it was parked.
Anderson and Milsdf®! proposed that human memory is optimized for information retrieval based on the
statistical properties of information use, in people’s everyday lives, based on a model was developed by
Burrell1”®! (who investigated the pattern of book borrowings in several libraries; which were also having
items added to their stock). The rate at which the mind forgets seems to mirror the way that information
tends to lose its utility in the real world over time.

However, it has only recently been reliably establigHé® that forgetting, like learning, follows a power
law (the results of some studies could be fitted using exponential functions). The general relationship
between the retention of informatiof, and the time[’, since the last access has the foRn= oD~
(wherea andb are constants). It is known as tipewer law of forgetting The constant: depends on

June 16, 2005 v1.0a 117

_ Introduction 16 Human characteristics

12—

10 —

five courses

{8 1

three courses

one course

Test score

0
\ \ \ \ \ T

Co, 1 3 N 9, . 14 25y, 3y, 49y,
Inp]etjon yr2’770 yrgmo I “mo I 6mg Y7 o 7T m?‘)/r Z ”onl Sme
log (time + 1) in years

Figure 0.28: Effect of level of training on the retention of recognition of English—Spanish vocabulary. Adapted from B&firick.

the amount of initial learning. A study by Bahrié® (see Figure 0.28) looked at subjects’ retention of
English-Spanish vocabulary (the drop-off after 25 years may be due to physiological deteffSHation

The following are three theories of how forgetting occurs:

1. Memory traces simply fade away.

2. Memory traces are disrupted or obscured by newly formed memory traces created by new information
being added to memory.

3. The retrieval cues used to access memory traces are lost.

The process of learning new information is not independent of already-learned information. There can be
mutual inference between the two items of information. The interference of old information, caused by new
information, is known agetroactive interferencelt is not yet known whether the later information weakens
the earlier information, or whether it is simply stronger and overshadows access to the earlier information.
The opposite effect of retroactive interferencprisactive interferenceln this case, past memories interfere
with more recent ones.

Table 0.15 and Table 0.16 (based on Andefébrare examples of the word-pair association tests used
to investigate interference effects. Subjects are given a single pair of words to learn and are tested on tha
pair only (in both tables, Subject 3 is the control). The notafienB indicates that subjects have to learn
to respond withB when given the cué\. An example of a word-pair isailor-tipsy The Worse/Better
comparison is against the performance of the control subjects.

Table 0.15: Proactive inhibition. The third row indicates learning performance; the fifth row indicates recall performance,
relative to that of the control. Based on Andersth.

Subject 1 Subject 2 Subject 3
Learn A=B Learn C=-D Rest

Learn A=D Learn A=B Learn A=D
Worse Better

Test A=D Test A=D Test A=D
Worse Worse

118 v 1.0a June 16, 2005

16 Human characteristics Introductiom

| Rare [| Common | | Alloys | | Precious || Masonary ‘
Platinum Aluminum Bronze Sapphire leest'one
. Copper Emerald Granite
Silver Steel .
Gold Lead Brass Diamond Marble
Iron a Ruby Slate

Figure 0.29: Words organized according to their properties—thieeralsconceptual hierarchy. Adapted from Bower, Clark,
Lesgold, and Winzen43]

Table 0.16: Retroactive inhibition. The fourth row indicates subject performance relative to that of the control. Based on
Andersori34

Subject 1 Subject 2 Subject 3
Learn A=B Learn A=B Learn A=B
Learn A=D Learn C=D Rest

Test A=B Test A=B Test A=B
Much worse Worse

The general conclusion from the, many, study results is that interference occurs in both learning and
recall when there are multiple associations for the same item. The improvement in performance of subjects
in the second category, of proactive inhibition, is thought to occur because of a practice effect.

16.2.2.5 Organized knowledge
Information is not stored in people’s LTM in an unorganized form (for a detailed discussidif!)séghis developers
section provides a brief discussion of the issues. More detailed discussions are provided elsewhere inkﬂﬁgggg
specific cases that apply to reading and writing source code. 7eridentifier
Whenever possible, the coding guidelines given in this book aim to take account of the abilities and
limitations that developers have. An example of how it is possible to use an ability of the mind (organiz-
ing information in memory) to overcome a limitation (information held in LTM becoming inaccessible) is
provided by the following demonstration.
Readers might like to try remembering words presented in an organized form and as a simple list. Read
the words in Figure 0.29 out loud, slowly and steadily. Then try to recall as many as possible. Then repeat
the process using the words given below. It is likely that a greater number of words will be recalled from
the organized structure. The words in the second list could be placed into the same structure as the first list,

instead they appear in a random order.

pine elm pansy garden wild banyan plants
delphinium conifers dandelion redwood palm ash
violet daisy tropical chestnut flowers spruce lupin
buttercup trees deciduous mango willow rose

Familiarity with information being learned and recalled can also make a difference. Several studies have
shown that experts perform better than non-experts in remembering information within their domain of ex-
pertise. For instance, McKeithen, Reitman, Ruster, and Hittleneasured developers’ ability to memorize

June 16, 2005 v1.0a 119

_ Introduction 16 Human characteristics

developer errors
memory overflow

conditional 1728
statement

phonolog- o
ical loop

program source code. Subjects were presented with two listings; one consisted of a sequence of lines the
made up a well-formed program, the other contained the same lines but the order in which they appearec
on the listing had been randomized. Experienced developers (more than 2,000 hr of general programming
and more than 400 hr experience with the language being used in the experiment) did a much better job a
recalling source lines from the listing that represented a well-formed program and inexperienced developers
Both groups did equally well in recalling lines from the randomized listing. The experiments also looked
at how developers remembered lists of language keywords they were given. How the information was
organized was much more consistent across experienced developers than across inexperienced develop
(experienced developers also had a slightly deeper depth of information chunking, 2.26 vs. 1.88).

16.2.2.6 Errors caused by memory overflow
Various studies have verified that limits on working memory can lead to an increase in a certain kind of
error when performing a complex task. Byrne and Bdt#irlooked at postcompletion errors (an example
of this error is leaving the original in the photocopy machine after making copies, or the ATM card in the
machine after withdrawing money) in complex tasks. A task is usually comprised of several goals that
need to be achieved. It is believed that people maintain these goals using a stack mechanism in working
memory. Byrne and Bovair were able to increase the probability of subjects making postcompletion errors
in a task assigned to them. They also built a performance model that predicted postcompletion errors tha
were consistent with those seen in the experiments.

The possible impact of working memory capacity-limits in other tasks, related to reading and writing
source code, is discussed elsewhere. However, the complexity of carrying out studies involving working
memory should not be underestimated. There can be unexpected interactions from many sources. A stud
by Lemaire, Abdi, and FayP! highlighted the complexity of trying to understand the affects of working
memory capacity limitations. The existing models of the performance of simple arithmetic operations,
involve an interrelated network in long-term memory (built during the learning of arithmetic facts, such as
the multiplication table, and reinforced by constant practice). Lemaire et al. wanted to show that simple
arithmetic also requires working memory resources.

To show that working memory resources were required, they attempted to overload those resources
Subjects were required to perform another task at the same time as answering a question involving simple
arithmetic (e.g.4 + 8 = 12, true or false?). The difficulty of the second task varied between experiments.
One required subjects to continuously say the withigl another had them continuously say the letters
abcdef while the most difficult task required subjects to randomly generate letters from thlecsksf (this
was expected to overload the central executive system in working memory).

The interesting part of the results (apart from confirming the authors’ hypothesis that working memory
was involved in performing simple arithmetic) was how the performances varied depending on whether the
answer to the simple arithmetic question was true or false. The results showed that performance for prob
lems that were true was reduced when both the phonological loop and the central executive were overloade
while performance on problems that were false was reduced when the central executive was overloaded.

A conditional expression requires that attention be paid to it if a developer wants to know under what set
of circumstances it is true or false. What working memory resources are needed to answer this question
does keeping the names of identifiers in the phonological loop, or filling the visuo-spatial sketch pad (by
looking at the code containing the expression) increase the resources required; does the semantics associa
with identifiers or conditions affect performance? Your author does not know the answers to any of these
questions but suspects that these issues, and others, are part of the effort cost that needs to be paid
extracting facts from source code.

16.2.2.7 Memory and code comprehension

As the results from the studies just described show, human memory is far from perfect. What can coding
guidelines do to try to minimize potential problems caused by these limitations? Some authors of other
coding guideline documents have obviously heard of Mill&® 7+2 paper (although few seem to have
read it), often selecting five as the maximum bound on the use of some conéfiti¢tamwever, the effects

120 v 1.0a June 16, 2005

16 Human characteristics Introductiom

of working memory capacity-limits cannot be solved by such simple rules. The following are some of the
many issues that need to be considered:

« What code is likely to be written as a consequence of a guideline recommendation that specifies some
limit on the use of a construct? Would following the guideline lead to code that was more difficult to
comprehend?

* Human memory organizes information into related chunks (which can then be treated as a single
item) multiple chunks may in turn be grouped together, forming a structured information hierarchy.
The visibility of this structure in the visible source may be beneficial.

There are different limits for different kinds of information.

« All of the constructs in the source can potentially require working memory resources. For instance,
identifiers containing a greater number of syllables consume more resources in the phonologiéﬁ%‘éﬁ&ﬁéwme

There has been some research on the interaction between human memory and software development. For
instance, Altmani®! built a computational process model based on SOAR, and fitted it to 10.5 minutes of
programmer activity (debugging within @macs window). The simulation was used to study the memories,
called near-term memory by Altmann, built up while trying to solve a problem. However, the majority of
studies discussed in this book are not directly related to reading and writing source code (your author has
not been able to locate many). They can, at best, be used to provide indicators. The specific applications of
these results occur throughout this book. They include reducing interference between informatione ke

and reducing the complexity of reasoning tasks. 17282&'}?5%%%
syntax

16.2.2.8 Memory and aging
A study by Swansd#® investigated how various measures of working memory varied with the age of the memory
subject. The results from diverse working memory tasks were reasonably intercorrelated. The following are 29"
the general conclusions:

« Age-related differences are better predicted by performance on tasks that place high demands on
accessing information or maintaining old information in working memory than on measures of pro-
cessing efficiency.

» Age-related changes in working memory appear to be caused by changes in a general capacity system.

« Age-related performance for both verbal and visuo-spatial working memory tasks showed &jfiffiapata
patterns of continuous growth that peak at approximately age 45.

16.2.3 Attention
Attention is a limited resource provided by the human mind. It has been proposed that the age we live inttention
is not the information age, but the attention &3&. Viewed in resource terms there is often significantly
more information available to a person than attention resources (needed to process it). This is certainly true
of the source code of any moderately large application.

Much of the psychology research on attention has investigated how inputs from our various senses han-
dled. It is known that they operate in parallel and at some point there is a serial bottleneck, beyond which
point it is not possible to continue processing input stimuli in parallel. The point at which this bottleneck
occurs is a continuing subject of debate. There are early selection theories, late selection theories, and
theories that combine the tW&13! In this book, we are only interested in the input from one sense, the
eyes. Furthermore, the scene viewed by the eyes is assumed to be under the control of the viewer. There are
no objects that spontaneously appear or disappear; the only change of visual input occurs when the viewer
turns a page or scrolls the source code listing on a display.

Read the bold print in the following paragraph:

June 16, 2005 v1.0a 121

_ Introduction 16 Human characteristics

Somewherémong hiddenthe in mostthe spectacularRocky Mountainsognitive nearabilities Cen-
tral City is Coloradothe anability old to minerselecthid onea messagéox from of another. gold. We
Althoughdo severathis hundredoy peoplefocusinghaveour lookedattention for onit, certain theycues
havesuchnotasfoundtype it style.

What do you remember from the regular, non-bold, text? What does this tell you about selective atten-
tion?

People can also direct attention to their internal thought processes and memories. Internal thought prc
cesses are the main subject of this section. The issue of automatization (the ability to perform operations

automa o gutomatically after a period of training) is also covered; visual attention is discussed elsewhere.

Ideas and theories of attention and conscious thought are often intertwined. While of deep significance
these issues are outside the scope of this book. The discussion in this section treats attention as a resour
available to a developer when reading and writing source code. We are interested in knowing the characteris
tics of this resource, with a view to making the best use of the what is available. Studies involving attention
have looked at capacity limits, the cost of changes of attention, and why some thought-conscious processe
require more effort than others.

The following are two attention resource theories:

» The single-capacity theoryl'his proposes that performance depends on the availability of resources;
more information processing requires more resources. When people perform more than one task a
the same time, the available resources per task is reduced and performance decreases.

* The multiple-resource theor¥his proposes that there are several different resources. Different tasks
can require different resources. When people perform more than one task at the same time, the effec
on the response for each task will depend on the extent to which they need to make use of the same
resource at the same time.

Many of the multiple-resource theory studies use different sensory input tasks; for instance, subjects are
required to attend to a visual and an audio channel at the same time. Reading source code uses a sing
sensory input, the eyes. However, the input is sufficiently complex that it often requires a great deal of
thought. The extent to which code readthgughttasks are sufficiently different that they will use different
cognitive resources is unknown. Unless stated otherwise, subsequent discussion of attention will assum
that the tasks being performed, in a particular context, call on the same resources.

M veioney As discussed previously, the attention, or rather the focus of attention is believed to be capacity-limited.
Studies suggest that this limit is around four chuR&8. Studie§3>9 have also found that attention perfor-
mance has an age-related component.

power law of Power law of learning
learning Studies have found that nearly every task that exhibits a practice effect followewres law of learning
which has the form:

RT =a+bN"° (0.21)

whereRT is the response timé&y is the number of times the task has been performedpahgdandc are
constants. There were good theoretical reasons for expecting the equation to have an exponential form (i.€
a + be~°N); many of the experimental results could be fitted to such an equation. However, if chunking is
assumed to play a part in learning, a power law is a natural consequence (sedfffeelh discussion).

16.2.4 Automatization

automatization Source code contains several frequently seen patterns of usage. Experienced developers gain a lot of expe
ence writing (or rather typing in) these constructs. As experience is gained, developers learn to type in these
constructs without giving much thought to what they are doing. This process is rather like learning to write

122 v 1.0a June 16, 2005

16 Human characteristics Introductiom

at school; children have to concentrate on learning to form letters and the combination of letters that form a
word. After sufficient practice, many words only need to be briefly thought before they appear on the page
without conscious effort.

Theinstance theorpf automatizatiol§*°! specifies that novices begin by using an algorithm to perform
a task. As they gain experience they learn specific solutions to specific problems. These solutions are re-
trieved from memory when required. Given sufficient experience, the solution to all task-related problems
can be obtained from memory and the algorithmic approach, to that task, is abandoned. The underlying
assumptions of the theory are that encoding of problem and solution in memory is an unavoidable conse-
guence of attention. Attending to a stimulus is sufficient to cause it to be committed to memory. The theory
also assumes that retrieval of the solution from memory is an unavoidable consequence of attending to the
task (this retrieval may not be successful, but it occurs anyway). Finally, each time the task is encountered
(the instances) it causes encoding, storing, and retrieval, making it a learning-based theory.

Automatization (or automaticity) is an issue for coding guidelines in that many developers will have
learned to use constructs whose use is recommended against. Developers’ objections to having to stop
using constructs that they know so well, and having to potentially invest in learning new techniques, is
something that management has to deal with.

16.2.5 Cognitive switch

Some cognitive processes are controlled by a kinelxefcutivenechanism. The nature of this executive isgnitive switch
poorly understood and its characteristics are only just starting to be investitfdtethe process of com-
prehending source code can require switching between different tasks. 8tdiese found that subjects
responses are slower and more error prone immediately after switching tasks. The following discussion
highlights the broader research results.

A study by Rogers and MonsE#?8l used the two tasks of classifying a letter as a consonant or vowel,
and classifying a digit as odd or even. The subjects were split into three groups. One group was given the
latter classification task, the second group the digit classification task, and the third group had to alternate
(various combinations were used) between letter and digit classification. The results showed that having to
alternate tasks slowed the response times by 200 to 250 ms and the error rates went up from 2% to 3% to
6.5% to 7.5%. A study by Altmarnt?! found that when the new task shared many features in common with
the previous task (e.g., switching from classifying numbers as odd or even, to classifying them as less then
or greater than five) the memories for the related tasks interfered, causing a reduction in subject reaction
time and an increase in error rate.

The studies to date have suggested the following conclu§itis:

« When it occurs the alternation cost is of the order of a few hundred milliseconds, and greater for more
complex tasks:38l

« When the two tasks use disjoint stimulus sets, the alternation cost is reduced to tens of milliseconds,
or even zero. For instance, the tasks used by Spector and Bied&#Havere to subtract three from
Arabic numbers and name antonyms of written words.

« Adding a cue to each item that allows subjects to deduce which task to perform reduces the alternation
cost. In the Spector and Biederman study, they suffixed numbers with “+3” or “-3” in a task that
required them to add or subtract three from the number.

< An alternation cost can be found in tasks having disjoint stimulus sets when those stimulus sets
occurred in another pair of tasks that had recently been performed in alternation.

These conclusions raise several questions in a source code reading context. To what extent do different tasks
involve different stimulus sets and how prominent must a cue be (i.e., (sctbie the front of a hexadecimal

number sufficient to signal a change of number base)? These issues are discussed elsewhere undei:r thte C
language constructs that might involve cognitive task switches. " Constant’
value
613bitwise oper-
ators
June 16, 2005 v 1.0a

_ Introduction 16 Human characteristics

cognitive effort

cognitive load

memory o
chunking

identifier 787
cognitive re-
source usage

Probably the most extreme form of cognitive switch is an external interruption. In some cases, it may be
necessary for developers to perform some external action (e.g., locating a source file containing a neede
definition) while reading source code. Lator€f8 discusses the impact of interruptions on the perfor-
mance of flight deck personnel (in domains where poor performance in handling interruptions can have
fatal consequences), and McFarléfi provides a human-computer interruption taxonomy.

16.2.6 Cognitive effort

Why do some mental processes seem to require more mental effort than others? Why is effort an issue ir
mental operations? The following discussion is based on Chapter 8 of Pa$Hler.

One argument is that mental effort requires energy, and the body’s reaction to concentrated thinking is to
try to conserve energy by creating a sense of effort. Studies of blood flow show that the brain accounts for
20% of heart output, and between 20% to 25% of oxygen and glucose requirements. But, does concentrate
thinking require a greater amount of metabolic energy than sitting passively? The answer from PET scans
of the brain appears to be no. In fact the energy consumption of the visual areas of the brain while watching
television are higher than the consumption levels of those parts of the brain associatdiffiaiththinking

Another argument is that the repeated use of neural systems produces a temporary reduction in thei
efficiency. A need to keep these systems in a state of readiness (fight or flight) could cause the sensation c
mental effort. The results of some studies are not consistent with this repeated use argument.

The final argument, put forward by Pashler, is ttifficult thinkingputs the cognitive system into a state
where itis close to failing. It is the internal recognition of a variety of signals of impending cognitive failure
that could cause the feeling of mental effort.

At the time of this writing there is no generally accepted theory of the root cause of cognitive effort. It
is a recognized effect and developers’ reluctance to experience it is a factor in the specification some of the
guideline recommendations.

What are the components of the brain that are most likely to be resource limited when performing a
source code comprehension task? Source code comprehension involves many of the learning and problel
solving tasks that students encounter in the class room. Studies have found a significant correlation betwee
the working memory requirements of a problems and students ability to 9&%@ and teenagers academic
performance in mathematics and science subjects (but not Engtgh).

Most existing research has attempted to find a correlation between a subjects learning and problem sol\
ing performance and the capacity of their working men&r).Some experiments have measured subjects
recall performance, after performing various tasks. Others have measured subjects ability to make structur
the information they are given into a form that enables them to answer questions BHdeit., who met
who in “The boy the girl the man saw met slept.”).

Cognitive load might be defined as the total amount of mental activity imposed on working memory at
any instant of time. The cognitive effort needed to solve a problem being the sum of all the cognitive loads
experienced by the person seeking the solution.

t
Cognitive effort = Z Cognitive load, (0.22)

=1
Possible techniques for reducing the probability that a developers working memory capacity will be ex-
ceeded during code comprehension include:
¢ organizing information into chunks that developers are likely to recognize and have stored in their
long-term memory,
* minimizing the amount of information that developers need to simultaneously keep in working mem-
ory during code comprehension (i.e., just in time information presentation),

124 v 1.0a June 16, 2005

16 Human characteristics Introductiom

* minimizing the number of relationships between the components of a problem that need to be con-
sidered (i.e., break it up into smaller chunks that can be processed independently of each other).
Algorithms based on database theory and neural netiifksave been proposed as a method of
measuring theelational complexityof a problem.

16.2.7 Human error

The discussion in this section has been strongly influencedurgan Errorby Reasort'% Models of developer
errors made by people have been broken down, by researchers, into different categories. errors

« Skill-based errors (see Table 0.17) result from some failure in the execution and/or the storage stage
of an action sequence, regardless of whether the plan which guided when was adequate to achieve its
objective. Those errors that occur during execution of an action are &ilbsénd those that occur
because of an error in memory are calleplses

» Mistakescan be defined as deficiencies or failures in the judgmental and/or inferential processes in-
volved in the selection of an objective or in the specification of the means to achieve it, irrespective of
whether the actions directed by this decision-scheme run according tdMiitakesare further cate-
gorized into one of two kinds—rule basedmistakes (see Table 0.18) akiowledge-basenhistakes
(see Table 0.19) mistakes.

This categorization can be of use in selecting guideline recommendations. It provides a framework for
matching the activities of developers against existing research data on error rates. For instance, developers
would make skill-based errors while typing into an editor or using cut-and-paste to move code around.

Table 0.17: Main failure modes for skill-based performance. Adapted from ReB36.

Inattention Over Attention
Double-capture slips Omissions
Omissions following interruptions Repetitions
Reduced intentionality Reversals

Perceptual confusions
Interference errors

Table 0.18: Main failure modes for rule-base performance. Adapted from Rea&h.

Misapplication of Good Rules Application of Bad Rules

First exceptions Encoding deficiencies
Countersigns and nosigns Action deficiencies
Information overload Wrong rules

Rule strength Inelegant rules
General rules Inadvisable rules
Redundancy

Rigidity

June 16, 2005 v1.0a 125

_ Introduction 16 Human characteristics

Table 0.19: Main failure modes for knowledge-based performance. Adapted from RE486n.

Knowledge-based Failure Modes

Selectivity

Workspace limitations

Out of, sight out of mind

Confirmation bias

Overconfidence

Biased reviewing

lllusory correlation

Halo effects

Problems with causality

Problems with complexity
Problems with delayed feed-back
Insufficient consideration of processes in time
Difficulties with exponential developments
Thinking in causal series not causal nets (unaware of side-effects of action)
Thematic vagabonding (flitting from issue to issue)
Encysting (lingering in small detail over topics)

16.2.7.1 Skill-based mistakes
The consequences of possible skill-based mistakes may result in a coding guideline being created. How
ever, by their very nature these kinds of mistakes cannot be directly recommended against. For instance
mistypings of identifier spellings leads to a guideline recommendation that identifier spellings differ in more

identifier 7675 than one significant character. A guideline recommending that identifier spellings not be mistyped being

pointless.

Information on instances of this kind of mistake can only come from experience. They can also depend
on development environments. For instance, cut-and-paste mistakes may vary between use of line-base
and GUI-based editors.

16.2.7.2 Rule-based mistakes
rule-base mis- Use of rules to perform a task (a rule-based performance) does not imply that if a developer has sufficient
takes expertise within the given area that they no longer need to expend effort thinking about it (a knowledge-
based performance), only that a rule has been retrieved, from the memory, and a decision made to use
(rending a knowledge-based performance).

The starting point for the creation of guideline recommendations intended to reduce the number of rule-
based mistakes, made by developers is an extensive catalog of such mistakes. Your author knows of no suc
catalog. An indication of the effort needed to build such a catalog is provided by a study of subtraction
mistakes, done by VanLehF*8l He studied the mistakes made by children in subtracting one number from
another, and built a computer model that predicted many of the mistakes seen. The surprising fact, in the
results, was the large number of diagnosed mistakes (134 distinct diagnoses, with 35 occurring more thar
once). That somebody can write a 250-page book on subtraction mistakes, and the model of procedura
errors built to explain them, is an indication that the task is not trivial.

Holland, Holyoak, Nisbett, and Thag&®#! discuss the use of rules in solving problems by induction
and the mistakes that can occur through different rule based performances.

16.2.7.3 Knowledge-based mistakes
Mistakes that occur when people are forced to use a knowledge-based performance have two basic source

rgggnng.ﬁgo bounded rationality and an incomplete or inaccurate mental model of the problem space.

A commonly used analogy of knowledge-based performances is that of a beam of light (working mem-
ory) that can be directed at a large canvas (the mental map of the problem). The direction of the beam is
partially under the explicit control of its operator (the human conscious). There are unconscious influences
pulling the beam toward certain parts of the canvas and avoiding other parts (which may, or may not, have
any bearing on the solution). The contents of the canvas may be incomplete or inaccurate.

126 v 1.0a June 16, 2005

16 Human characteristics Introductiom

People adopt a variety of strategies, or heuristics, to overcome limitations in the cognitive resources
available to them to perform a task. These heuristics appear to work well in the situations encountered in
everyday human life, especially so since they are widely used by large numbers of people who can share in
a common way of thinking.

Reading and writing source code is unlike everyday human experiences. Furthermore, the reasoning
methods used by the non-carbon-based processor that executes software are wholly based on mathematical
logic, which is only one of the many possible reasoning methods used by people (and rarely the preferred
one at that).

There are several techniques for reducing the likelihood of making knowledge-based mistakes. For in-

stance, reducing the size of the canvas that needs to be scanned and acknowledging the effects of %Wf@m
0

16.2.7.4 Detecting errors o p e -
The modes of control for both skill-based and rule-based performances are feed-forward control, wiilfe"festc
mode for knowledge-based performances is feed-back control. Thus, the detection of any skill-based or
rule-based mistakes tends to occur as soon as they are made, while knowledge-based mistakes tend to be
detected long after they have been made.

There have been studies looking at how people diagnose problems caused by knowledge-based mis-
takes>®®! However, these coding guidelines are intended to provide advice on how to reduce the number of
mistakes, not how to detect them once they have been made. Enforcement of coding guidelines tcgu@@ﬁgﬁagn
that violations are detected is a very important issue. enfreeate

16.2.7.5 Error rates

There have been several studies of the quantity of errors made by people performing various tasks. lfpeople
is relatively easy to obtain this information for tasks that involve the creation of something visible (e.g®"™" 'S
written material, of a file on a computer). Obtaining reliable error rates for information that is read and
stored (or not) in people’s memory is much harder to obtain. The following error rates may be applicable to
writing source code:

» Touch typists, who are performing purely data efftfy* with no error correction 4% (per keystrok@)%ﬁg‘sg mis-
typing nonsense words (per word) 7.5%.

« Typists using a line-oriented word proces88? 3.40% of (word) errors were detected and corrected
by the typist while typing, 0.95% were detected and corrected during proofreading by the typist, and
0.52% were not detected by the typist.

 Students performing calculator tasks and table lookup tasks: per multipart calculation, per table
lookup, 1% to 29488°

16.2.8 Heuristics and biases
In the early 1970s Amos Tversky, Daniel Kahneman, and other psycholétisterformed studies, the Heuristics
results of which suggested people reason and make decisions in ways that systematically violate (matlie>>>°
matical based) rules of rationality. These studies covered a broad range of problems that might occur under
quite ordinary circumstances. The results sparked the growth of a very influential research program often
known as théneuristics and biasegsrogram.

There continues to be considerable debate over exactly what conclusions can be drawn from the results
of these studies. Many researchers in the heuristics and biases field claim that people lack the underlying
rational competence to handle a wide range of reasoning tasks, and that they exploit a collection of simple
heuristics to solve problems. Itis the use of these heuristics that make them prone to non-normative patterns
of reasoning, or biases. This position, sometimes calledtduedard picture claims that the appropriate
norms for reasoning must be derived from mathematical logic, probability, and decision theory. An alterna-
tive to the standard Picture is proposed by evolutionary psychology. These researchers hold that Ibﬁfwg@@y
probability are not the norms against which human reasoning performance should be measured.

June 16, 2005 v1.0a 127

_ Introduction 16 Human characteristics

When reasoning about source code the appropriate norm is provided by the definition of the programming
language used (which invariably has a basis in at least first order predicate calculus). This is not to say tha
probability theory is not used during software development. For instance, a developer may choose to make
use of information on commonly occurring cases (such usage is likely to be limited to ordering by frequency
or probability; Bayesian analysis is rarely seen).

What do the results of the heuristics and biases research have to do with software development, anc
do they apply to the kind of people who work in this field? The subjects used in these studies were not,
at the time of the studies, software developers. Would the same results have been obtained if software

developer o s " .

menal char- developers had been used as subjects? This question implies that developers’ cognitive processes, eith
through training or inherent abilities, are different from those of the subjects used in these studies. The
extent to which developers are susceptible to the biases, or use the heuristics, found in these studies |
unknown. Your author assumes that they are guilty until proven innocent.

Another purpose for describing these studies is to help the reader get past the idea that people exclusivel
apply mathematical logic and probability in problem solving.

16.2.8.1 Reasoning

developer Comprehending source code involves performing a significant amount of reasoning over a long period of

reasoning time. People generally consider themselves to be good at reasoning. However, anybody who has eve
written a program knows how many errors are made. These errors are often claimed, by the author, to be
caused by any one of any number of factors, except poor reasoning ability. In practice people are good a
certain kinds of reasoning problems (the kind seen in everyday life) and very poor at others (the kind that
occur in mathematical logic).

The basic mechanisms used by the human brain, for reasoning, have still not been sorted out and ar
an area of very active research. There are those who claim that the mind is some kind of general-purpos
processor, while others claim that there are specialized units designed to carry out specific kinds of tasks
(such as solving specific kinds of reasoning problems). Without a general-purpose model of human reasor

_ ing, there is no more to be said in this section. Specific constructs involving specific reasoning tasks are
s?aetlgrg;t%?gg " discussed in the relevant sentences.
logical-AND- 1238

expression 16.2.8.2 Rationality
. syntax
logical-OR- 1245 \any of those who study software developer behavior (there is no generic name for such people) have &

expression L0 X
smax pelief in common with many economists. Namely, that their subjects act in a rational manner, reaching
?aet‘,’fr']g‘l’ne; decisions for well-articulated goals using mathematical logic and probability, and making use of all the
necessary information. They consider decision making that is not based on these norms iasatieimej .
bounded rational- Deciding which decisions are the rational ones to make requires a norm to compare against. Many early
b researchers assumed that mathematical logic and probability were the norm against which human decision
should be measured. The tebounded rationaliti}'8”l is used to describe an approach to problem solving
performed when limited cognitive resources are available to process the available information. A growing
number of studid&’? are finding that the methods used by people to make decisions and solve problems
are often optimal, given the resources available to them. A good discussion of the issues, from a psycholog)
perspective, is provided by Samuels, Stich and FauéHer.
For some time a few economists have been arguing that people do not behave according to mathematice
norms, even when making decisions that will affect their financial well-b&lflgEvidence for this heresy
has been growing. If people deal with money matters in this fashion, how can their approach to software
development fare any better? Your author takes the position, in selecting some of the guideline recommer
dations in this book, that developers’ cognitive processes when reading and writing source are no different
than at other times.
When reading and writing source code written in the C language, the rationality norm is defined in terms
of the output from the C abstract machine. Some of these guideline recommendations are intended to hel
ensure that developers’ comprehension of source agrees with this norm.

128 v 1.0a June 16, 2005

16 Human characteristics Introductiom

Value

Losses Gains

Figure 0.30: Relationship between subjective value to gains and to losses. Adapted from KaHf&han.

16.2.8.3 Risk asymmetry

The termrisk asymmetryefers to the fact that people atigsk aversewhen deciding between alternativesisk asymmetry
that have a positive outcome, but aigk seekingvhen deciding between alternatives that have a negative
outcome.

Making a decision using uncertain information involves an element of risk; the decision may not be the
correct one. How do people handle risk?

Kahneman and Tversk§*l performed a study in which subjects were asked to make choices about
gaining or losing money. The theory they creatpthspect theorydiffered from the accepted theory of
the day,expected utility theorywhich still has followers). Subjects were presented with the following
problems:

Problem 1: In addition to whatever you own, you have been given 1,000. You are now asked to
choose between:

A: Being given a further 1,000, with probability 0.5

B: Being given a further 500, unconditionally

Problem 2: In addition to whatever you own, you have been given 2,000. You are now asked to
choose between:

C: Loosing 1,000, with probability 0.5

D: Loosing 500, unconditionally

The majority of the subjects chose B (84%) in the first problem, and C (69%) in the second. These
results, and many others like them, show that people are risk averse for positive prospects and risk seeking
for negative ones (see Figure 0.30).

In the following problem the rational answer, based on a knowledge of probability, is E; however, 80%
of subjects chose F.

Problem 3: You are asked to choose between:
E: Being given 4,000, with probability 0.8
F: Being given 3,000, unconditionally

Kahneman and Tversky also showed that people’s subjective probabilities did not match the objective
probabilities. Subjects were given the following problems:

Problem 4: You are asked to choose between:
G: Being given 5,000, with probability 0.001

June 16, 2005 v1.0a 129

_ Introduction 16 Human characteristics

framing effect

Decision weight

0.5 1.0
Stated probability

Figure 0.31: Possible relationship between subjective and objective probability. Adapted from KahKé&fhan.

H: Being given 5, unconditionally

Problem 5: You are asked to choose between:
I: Loosing 5,000, with probability 0.001

J: Loosing 5, unconditionally

Most the subjects chose G (72%) in the first problem and J (83%) in the second.

Problem 4 could be viewed as a lottery ticket (willing to forego a small amount of money for the chance
of wining a large amount), while Problem 5 could be viewed as an insurance premium (willingness to pay a
small amount of money to avoid the possibility of having to pay out a large amount).

The decision weight given to low probabilities tends to be higher than that warranted by the evidence.

The decision weight given to other probabilities tends to be lower than that warranted by the evidence (see
Figure 0.31).

16.2.8.4 Framing effects

The framing effect occurs when alternative framings of what is essentially the same decision task cause
predictably different choices.

Kahneman and Tverskj®! performed a study in which subjects were asked one of the following ques-
tion:

Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is expected
to kill 600 people. Two alternative programs to combat the disease have been proposed. Assume that
the exact scientific estimates of the consequences of the programs are as follows:

If Program A is adopted, 200 people will be saved.

If Program B is adopted, there is a one-third probability that 600 people will be saved and a two
thirds probability that no people will be saved.

Which of the two programs would you favor?

This problem is framed in terms of 600 people dying, with the option being between two programs that
save lives. In this case subjects are risk averse with a clear majority, 72%, selecting Program A. For the

second problem the same cover story was used, but subjects were asked to select between differently worde
programs:

130 v 1.0a June 16, 2005

16 Human characteristics Introductiom

Attribute 2
/

Attribute 1

Figure 0.32: Text of background trade-off. Adapted from Tverdk3A7]

If Program C is adopted, 400 people will die.
If Program D is adopted, there is a one-third probability that nobody will die and two-thirds proba-
bility that 600 people will die.

In terms of their consequences Programs A and B are mathematically the same as C and D, respectively.
However, this problem is framed in terms of no one dying. The best outcome would be to maintain this
state of affairs. Rather than accept an unconditional loss, subjects become risk seeking with a clear majority,
78%, selecting Program D.

Even when subjects were asked both questions, separated by a few minutes, the same reversals in prefer-
ence were seen. These results have been duplicated in subsequent studies by other researchers.

16.2.8.5 Context effects

The standard analysis of the decision’s people make assumes that they are procedure-invariant; thatasexastects
sessing the attributes presented by different alternatives should always lead to the same one being selected.
Assume, for instance, that in a decision task, a person chooses alternative X, over alternative Y. Any previ-
ous decisions they had made between alternatives similar to X and Y would not be thought to affect later
decisions. Similarly, the addition of a new alternative to the list of available alternatives should not cause Y

to be selected, over X.

People will show procedure-invariance if they have well-defined values and strong beliefs. In these cases
the appropriate values might be retrieved from a master list of preferences held in a person’s memory. If
preferences are computed using some internal algorithm, each time a person has to make a decision, then it
becomes possible for context to have an affect on the outcome.

Context effects have been found to occur because of the prior history of subjects answering similar
guestions, background context, or because of presentation of the problem itself, local context. The following
two examples are taken from a study by Tversky and SimoRsbh.

To show that prior history plays a part in a subjects judgment, Tversky and Simonson split a group of
subjects in two. The first group was asked to decide between the alternstiaasd Y;, while the second
group was asked to select between the optiEasandY,. Following this initial choice all subjects were
asked to chose betweghandY'.

June 16, 2005 v1.0a 131

_ Introduction 16 Human characteristics

Table 0.20: Percentage of each alternative selected by subject gi®upsdSs. Adapted from Tversk{:317]

Warranty Price S; Sy

X1 $85 12%
Y1 $91 88%
X2 $25 84%
Yo $49 16%
X $60 57% 33%
Y $75 43% 67%

Subjects previously exposed to a decision where a small difference in price (see Table 0.20) ($85 vs
$91) was associated with a large difference in warranty (55,000 miles vs. 75,000 miles), were more likely to
select the less-expensive tire from the target set (than those exposed to the other background choice, whe
a large difference in price was associated with a small difference in warranty).

In a study by Simonson and Tversky?° subjects were asked to decide between two microwave ovens.
Both were on sale at 35% off the regular price, at sale prices of $109.99 and $179.99. In this case 43%
of the subjects selected the more expensive model. For the second group of subjects, a third microwave
oven was added to the selection list. This third oven was priced at $199.99, 10% off its regular price. The
$199.99 microwave appeared inferior to the $179.99 microwave (it had been discounted down from a lower
regular price by a smaller amount), but was clearly superior to the $109.99 model. In this case 60% selectec
the $179.99 microwave (13% chose the more expensive microwave). The presence of a third alternative ha
caused a significant number of subjects to switch the model selected.

16.2.8.6 Endowment effect

endawment effect Studies have shown that losses are valued far more than gains. This asymmetry in the value assigned, &
metry people, to goods can be seen in the endowment effect. A study performed Kiétdhrstrates this effect.
Subjects were divided into three groups. The first group of was given a coffee mug, the second group
was given a candy bar, and the third group was given nothing. All subjects were then asked to complete
a questionnaire. Once the questionnaires had been completed, the first group was told that they coul
exchange their mugs for a candy bar, the second group that they could exchange their candy bar for a mu
while the third group was told they could decide between a mug or a candy bar. The mug and the candy bal
were sold in the university bookstore at similar prices.

Table 0.21: Percentage of subjects willing to exchange what they had been given for an equivalently priced item. Adapted from
Knetschl722]

Group Yes No

Give up mug to obtain candy 89% 11%
Give up candy to obtain mug 90% 10%

The decisions made by the third group, who had not been given anything before answering the question
naire, were: mug 56%, candy 44%. This result showed that the perceived values of the mug and candy ba
were close to each other.

The decisions made by the first and second groups (see Table 0.21) showed that they placed a highe
value on a good they owned than one they did not own (but could obtain via a simple exchange).

The endowment effect has been duplicated in many other studies. In some studies, subjects require
significantly more to sell a good they owned than they would pay to purchase it.

16.2.8.7 Representative heuristic

representative The representative heuristic evaluates the probability of an uncertain event, or sample, by the degree ftc
heuristic ; :
which it

132 v 1.0a June 16, 2005

16 Human characteristics Introductiom

« is similar in its essential attributes to the population from which it is drawn, and
« reflects the salient attributes of the process that generates it

given two events, X and Y. The event X is judged to be more probable than Y when it is more representative.
The termsubjective probabilitys sometimes used to describe these probabilities. They are subjective in
the sense that they are created by the people making the dedBigective probabilityis the term used

to describe the values calculated from the stated assumptions, according to the axioms of mathematical
probability.

Selecting alternatives based on the representativeness of only some of their attributes can lead to signif-
icant information being ignored; in particular the nonuse of base-rate information provided as part ﬁgﬁ;’cﬁe
specification of a problem.

Treating representativeness as an operator, it is a (usually) directional relationship between a family,
or process M, and some instance or event X, associated with M. It can be defined for (1) a value and a
distribution, (2) an instance and a category, (3) a sample and a population, or (4) an effect and a cause.
These four basic cases of representativeness occur when (T&&ky

1. M is a family and X is a value of a variable defined in this family. For instance, the representative
value of the number of lines of code in a function. The most representative value might be the mean
for all the functions in a program, or all the functions written by one author.

2. M is a family and X is an instance of that family. For instance, the number of lines of code in the
functionfoo_bar It is possible for an instance to be a family. TRebinis an instance of the bird
family and a particular individual can be an instance of the Robin family.

3. Mis a family and X is a subset of M. Most people would agree that the population of New York City
is less representative of the US than the population of lllinois. The criteria for representativeness in
a subset is not the same as for one instance. A single instance can represent the primary attributes
of a family. A subset has its own range and variability. If the variability of the subset is small, it
might be regarded as a category of the family, not a subset. For instance, the selected subset of the
family birds might only include Robins. In this case, the set of members is unlikely to be regarded as
a representative subset of the bird family.

4. Mis a (causal) system and X is a (possible) instance generated by it. Here M is no longer a family of
objects, it is a system for generating instances. An example would be the mechanism of tossing coins
to generate instances of heads and tails.

16.2.8.7.1 Belief in the law of small numbers
Studies have shown that people have a strong belief in what is known as the law of small numbers. T&iSfsmall
law might be stated as: “Any short sequence of events derived from a random process shall have the sam&™"
statistical properties as that random process.” For instance, if a fairly balanced coin is tossed an infinite
number of times the percentage of heads seen will equal the percentage of tails seen. However, according to
the law of small numbers, any short sequence of coin tosses will also have this property. Statistically this is
not true, the sequencéHHHHHHHHH andTHHTHTTHTHare equally probable, but one of them does
not appear to be representative of a random sequence.

Readers might like to try the following problem.

The mean IQ of the population of eighth graders in a citigriswnto be 100. You have selected a
random sample of 50 children for a study of educational achievement. The first child tested hag an 1Q
of 150.

What do you expect the mean IQ to be for the whole sample?

June 16, 2005 v1.0a 133

_ Introduction 16 Human characteristics

Did you believe that because the sample of 50 children was randomly chosen from a large population,
with a known property, that it would also have this property?; that is, the answer would be 100? The effect
of a child with a high IQ being canceled out by a child with a very low 1Q? The correct answer is 101;
the known information, from which the mean should be calculated, is that we have 49 children with an
estimated average of 100 and one child with a known IQ of 150.

16.2.8.7.2 Subjective probability

subjective proba- In & study by Kahneman and TversR§?! subjects were divided into two groups. Subjects in one group
bility were asked thenore thanquestion, and those in the other group lgs tharguestion.

An investigator studying some properties of a language selected a paperback and computed the
average word-length in every page of the book (i.e., the number of letters in that page divided py the
number of words). Another investigator took the first line in each page and computed the line’s ayerage
word-length. The average word-length in the entire book is four. However, not every line or page has
exactly that average. Some may have a higher average word-length, some lower.

The first investigator counted the number of pages that had an average word-length of 6 or
(morelless) and the second investigator counted the number of lines that had an average word-length
of 6 or (more/less). Which investigator do you think recorded a larger number of such units (pages for
one, lines for the other)?

Table 0.22: Percentage of subjects giving each answer. Correct answers are starred. Adapted from Ki§Aeman.

Choice Lessthan 6 More than 6
The page investigator 20.8%" 16.3%
The line investigator 31.3% 42.9%"
About the same (i.e., within 47.9% 40.8%

5% of each other)

The results (see Table 0.22) showed that subjects judged equally representative outcomes to be equal
likely, the size of the sample appearing to be ignored.

When dealing with samples, those containing the smaller number of members are likely to exhibit the
largest variation. In the preceding case, the page investigator is using the largest sample size and is mor
likely to be closer to the average (4), which is less than 6. The line investigator is using a smaller sample
of the book’s contents and is likely to see a larger variation in measured word length (more than 6 is the
correct answer here).

16.2.8.8 Anchoring

Anchoring Answers to questions can be influenced by completely unrelated information. This was dramatically illus-
trated in a study performed by Tversky and Kahnef#f They asked subjects to estimate the percentage
of African countries in the United Nations. But, before stating their estimate, subjects were first shown an
arbitrary number, which was determined by spinnirvgheel of fortunén their presence. In some cases, for
instance, the number 65 was selected, at other times the number 10. Once a number had been determin
by thewheel of fortunesubjects were asked to state whether the percentage of African countries in the UN
was higher or lower than this number, and their estimate of the percentage. The median estimates were 45¢
of African countries for subjects whosechoringnumber was 65, and 25% for subjects whasehoring
number was 10.

The implication of these results is that people’s estimates can be substantially affected by a numerical

anchoringvalue, even when they are aware that the anchoring number has been randomly generated.

134 v 1.0a June 16, 2005

16 Human characteristics Introductiom

16.2.8.9 Belief maintenance
Belief comes in various forms. Theredssbelief (believing a statement to be falsepnbelief(not believ- belief main-
ing a statement to be trud)alf-belief quarter-belief and so on (the degrees of belief range from barely fenance
accepting a statement, to having complete conviction a statement is true). Knowledge could be defined as
belief plus complete conviction and conclusive justification.

The following are two approaches as to how beliefs might be managed.

1. Thefoundation approactargues that beliefs are derived from reasons for these beliefs. A belief is
justified if and only if (1) the belief is self-evident and (2) the belief can be derived from the set of
other justified beliefs (circularity is not allowed).

2. Thecoherence approachrgues that where beliefs originated is of no concern. Instead, beliefs must
be logically coherent with other beliefs (believed by an individual). These beliefs can mutually justify
each other and circularity is allowed. A number of different types of coherence have been proposed,
Includingdeductive coherendeequires a logically consistent set of beliefsjpbabilistic coherence
(assigns probabilities to beliefs and applies the requirements of mathematical probability tcstirem),
mantic coherencéased on beliefs that have similar meanings), exalanatory coherendgequires
that there be a consistent explanatory relationship between beliefs).

Thefoundation approaclis very costly (in cognitive effort) to operate. For instance, the reasons for beliefs
need to be remembered and applied when considering new beliefs. 8td8@lisaow that people exhibit

a belief preservation effect; they continue to hold beliefs after the original basis for those beliefs no longer
holds. The evidence suggests that people use some faromefence approador creating and maintaining

their beliefs.

There are two different ways doubt about a fact can occur. When the truth of a statement is not known
because of a lack of information, but the behavior in the long run is known, we uraertainty For
instance, the outcome of the tossing of a coin is uncertain, but in the long run the result is known to be
heads (or tails) 50% of the time. The case in which truth of a statement can never be precisely specified
(indeterminacy of the average behavior) is knowimagrecision for instance, “it will be sunny tomorrow”.

It is possible for a statement to contain both uncertainty and imprecision. For instance, the statement, “It
is likely that John is a young fellow”, is uncertain (John may not ly@ang fellowy and impreciseyoung
does not specify an exact age). For a mathematical formulation, see P&kin.

Coding guidelines need to take into account that developers are unlikely to make wholesale modifications
to their existing beliefs to make them consistent with any guidelines they are expected to adhere to. Learning
about guidelines is a two-way process. What a developer already knows will influence how the guideline
recommendations themselves will be processed, and the beliefs formed about their meaning. These beliefs
will then be added to the developer’s existing personal befi¢fs.

16.2.8.9.1 The Belief-Adjustment model
A belief may be based on a single piece of evidence, or it may be based on many pieces of evidence. How is
an existing belief modified by the introduction of new evidence? The belief-adjustment model of Hogarth
and Einhori%2 offers an answer to this question. This subsection is based on that paper. The basic equation
for this model is:

Sk = Sk—1 + wg[s(zx) — R] (0.23)

where:

S is the degree of belief (a value between 0 and 1) in some hypothesis, impression, or attitude after
evaluatingk items of evidence.

Sk—1 Is the anchor, or prior opinionSh: denotes the initial belief)s(xy) is the subjective evaluation of
the kth item of evidence (different people may assign different values for the same evidghcg, is the

June 16, 2005 v1.0a 135

_ Introduction 16 Human characteristics

reference point, or background, against which the impact ofthhéem of evidence is evaluatedy, is the
adjustment weight (a value between zero and one) fokthéem of evidence.

The encoding process

When presented with a statement, people can process the evidence it contains in several ways. They ce
use arevaluationprocess or aestimationprocess.

The evaluationprocess encodes new evidence relative to a fixed point— the hypothesis addressed by a
belief. If the new evidence supports the hypothesis, a person’s belief is increased, but that belief is decrease
if it does not support the hypothesis. This increase, or decrease, occurs irrespective of the current state of
person’s belief. For this cade = 0, and the belief-adjustment equation simplifies to:

Sp = Sp_1+ wks(xk) (0.24)

where:—1 < s(zy) < 1

An example of an evaluation process might be the belief that the abjaletays holds a value that is
numerically greater than

The estimationprocess encodes new evidence relative to the current state of a person’s beliefs. For this
caseR = S;_1, and the belief-adjustment equation simplifies to:

Sk = Sk—1 + wi(s(zx) — Sk—1) (0.25)

where:0 < s(xg) <1

In this case the degree of belief, in a hypothesis, can be thought of as a moving average. For an estimatio
process, the order in which evidence is presented can be significant. While reading source code written by
somebody else, a developer will form an opinion of the quality of that person’s work. The judgment of each
code sequence will be based on the readers current opinion (at the time of reading) of the person who wrot
it.

Processing

It is possible to consider(xy,) as representing either the impact of a single piece of evidence (so-called
Step-by-SteBhS), or the impact of several pieces of evidence (so-cElhetdof-Sequen¢&oS).

Sk = SO—I-wk[s(xl,...,zk) —R] (0.26)

wheres(z1, . .., x) is some function, perhaps a weighted average, of the individual subjective evaluations.

If a person is required to give a Step-by-Step response when presented with a sequence of evidence, the
obviously have to process the evidence in this mode. A person who only needs to give an End-of-Sequenc
response can process the evidence using either SbS or EoS. The process used is likely to depend on tl
nature of the problem. Aggregating, using EoS, evidence from a long sequence of items of evidence, or &
sequence of complex evidence, is likely to require a large amount of cognitive processing, perhaps more
than is available to an individual. Breaking a task down into smaller chunks by using an SbS process,
enables it to be handled by a processor having a limited cognitive capacity. Hogarth and Einhorn proposec
that when people are required to provide an EoS response they use an EoS process when the sequence
items is short and simple. As the sequence gets longer, or more complex, they shift to an SbS process, t
keep the peak cognitive load (of processing the evidence) within their capabilities.

Adjustment weight

The adjustment weighty;, will depend on the sign of the impact of the evideneér;) — R], and the
current level of beliefS;.. Hogarth and Einhorn argue that whey,) < R:

136 v 1.0a June 16, 2005

16 Human characteristics Introductiom

w = aSk_ (0.27)
Sy = Sk71+OéSk,18($k) (028)

and that when(z) > R:

wr = ﬂ(l — Sk—l) (0.29)
Sk = Sk_1+B(1 = Sk_1)s(xs) (0.30)

wherea and((0 < «, 8 < 1) represent sensitivity toward positive and negative evidence. Small values
indicating low sensitivity to new evidence and large values indicating high sensitivity. The valuesdf;

will also vary between people. For instance, some people have a tendency to give negative evidence greater
weight than positive evidence. People having strong attachments to a particular point of view may not give
evidence that contradicts this view any weigf§?!

Order effects

It can be showti®? that use of an SbS process when= S;,_; leads to a recency effect. Whéh= 0,

a recency effect only occurs when there is a mixture of positive and negative evidence (there is no recency
effect if the evidence is all positive or all negative).

The use of an E0S process leads to a primacy effect; however, a task may not require a response until all
the evidence is seen. If the evidence is complex, or there is a lot of it, people may adopt an SbS process. In
this case, the effect seen will match that of an SbS process. recency effect

A recency effecbccurs when the most recent evidence is given greater weight than earlier evidenc& A~ *™
primacy effecbccurs when the initial evidence is given greater weight than later evidence.

Study

A study by Hogarth and Einhof§? investigated order, and response mode, effects in belief updating.
Subjects were presented with a variety of scenarios (e.g., a defective stereo speaker thought to have a bad
connection, a baseball player whose hitting has improved dramatically after a new coaching program, an
increase in sales of a supermarket product following an advertising campaign, the contracting of lung cancer
by a worker in a chemical factory). Subjects read an initial description followed by two or more additional
items of evidence. The additional evidence might be positive (e.g., “The other players on Sandy’s team
did not show an unusual increase in their batting average over the last five weeks”") or negative (e.g., “The
games in which Sandy showed his improvement were played against the last-place team in the league”).
This positive and negative evidence was worded to create either strong or weak forms.

The evidence was presented in a variety of orders (positive or negative, weak or strong). Subjects were
asked, “Now, how likely do you think X caused Y on a scale of 0 to 100?” In some cases, subjects had to
respond after seeing each item of evidence: in other cases, subjects had to respond after seeing all the items.

The results (see Figure 0.33) only show a recency effect when the evidence is mixed, as predicted for the
caseR = 0.

Other studies have duplicated these results. For instance, professional auditors have been shown to
display recency effects in their evaluation of the veracity of company accB$30e!

16.2.8.9.2 Effects of beliefs
The persistence of beliefs after the information they are based on has been discredited is an important issue
in developer training.

Studies of physics undergraduatéd found that many hours of teaching only had a small effect on their
gualitative understanding of the concepts taught. For instance, predicting the motion of a ball dropped from
an airplane (see Figure 0.34). Many students predicted that the ball would take the path shown on the right
(b). They failed to apply what they had been taught over the years to pick the path on tlag left (

June 16, 2005 v1.0a 137

_ Introduction 16 Human characteristics

90— 90— 90— Positive-Negative
Strong-Weak | |
g 70 Weak-Strong B - u
) Weak-Strong
m | |
50 — — —
—] —] Negative-Positive
0 1 2 0 1 2 0 1 2
la 2a 3a
90— Weak-Stron, 90— 90—
]] Negative-Positive
Strong-Weak
| — .
.“‘1-.3 70 [o n
) Weak-Strong
M — |

50 —I Positive-Negative

Strong-Weak

0 2 0 2 0
1b 2b 3b

[\

Figure 0.33: Subjects belief response curves for positive weak—strong, negative weak—strong, and positive—negative evidence;
(a) Step-by-Step, (b) End-of-Sequence. Adapted from Hode#h.

Figure 0.34: Two proposed trajectories of a ball dropped from a moving airplane. Based on McClg&iey.

138 v 1.0a June 16, 2005

16 Human characteristics Introductiom

40 —

30 | corijlglctlon
k4
g 20
<
s disjunction

10 —

0
Alpha Inflate
Condition

Figure 0.35: Number of examples needed befalpha or inflate condition correctly predicted in six successive pictures.
Adapted from PazzahP19]

A study by Ploetzner and VanLeB?] investigated subjects who were able to correctly answer these
conceptual problems. They found that the students were able to learn and apply information that was implicit
in the material taught. Ploetzner and VanLehn also built a knowledge base of 39 rules needed to solve the
presented problems, and 85 rules needed to generate the incorrect answers seen in an earlier study.

A study by Pazzafil showed how beliefs can increase, or decrease, the amount of effort needed to
deduce a concept. Two groups of subjects were shown pictures of people doing something with a balloon.
The balloons varied in color (yellow or purple) and size (small or large), and the people (adults or five-
year-old children) were performing some operation (stretching balloons or dipping them in water). The first
group of subjects had to predict whether the picture was an “exampleadphd’, while the second group
had to “predict whether the balloon will be inflated”. The picture was then turned over and subjects saw the
answer. The set of pictures was the same for both groups of subjects.

The conditions under which the picture was @pha or inflate were the same, a conjunctive condi-
tion (age == adult) || (action == stretching) and a disjunction conditiolsize == small) &&

(color == yellow).

The difference between these two tasks to predict is that the first group had no prior beliefalpbaut
situations, while it was assumed the second group had background knowledge on inflating balloons. For
instance, balloons are more likely to inflate after they have been stretched, or an adult is doing the blowing
rather than a child.

The other important point to note is that people usually require more effort to learn conjunctive conditions
than they do to learn disjunctive conditions. 1ssconditionals

The results (see Figure 0.35) show that, for itiftate concept, subjects were able to make use of their
existing beliefs to improve performance on the disjunctive condition, but these beliefs caused a decrease
in performance on the conjunctive condition (being small and yellow is not associated with balloons being
difficult to inflate).

A study by Gilbert, Tafarodi, and MaloHé® investigated whether people could comprehend an assertion
without first believing it. The results suggested that their subjects always believed an assertion presented
to them, and that only once they had comprehended it were they in a position to, passiigiieveit.

The experimental setup used, involved presenting subjects with an assertion and interrupting them before
they had time taunbelievet. This finding has implications for program comprehension in that developers
sometimes only glance at code. Ensuring that what they see does not subsequently naetb&ided

or is a partial statement that will be read the wrong way without other information being provided, can
help prevent people from acquiring incorrect beliefs. The commonly heard teaching maxim of “always use
correct examples, not incorrect ones” is an application of this finding.

June 16, 2005 v1.0a 139

_ Introduction 16 Human characteristics

16.2.8.10 Confirmation bias
confirmation bias There are two slightly different definitions of the teoonfirmation biasised by psychologists, they are:

1. A person exhibits confirmation bias if they tend to interpret ambiguous evidence as (incorrectly) con-
firming their current beliefs about the world. For instance, developers interpreting program behavior
as supporting their theory of how it operates, or using the faults exhibited by a program to conform
their view that it was poorly written.

2. When asked to discover a rule that underlines some pattern (e.g., the numeric sequence 2—4-6), peop
nearly always apply test cases that will confirm their hypothesis. They rarely apply test cases that will
falsify their hypothesis.

oyercor-® Rabin and Schraff®® built a model showing that confirmation bias leads to overconfidence (people be-

lieving in some statement, on average, more strongly than they should). Their model assumes that whet
a person receives evidence that is counter to their current belief, there is a positive probability that the evi:
dence is misinterpreted as supporting this belief. They also assume that people always correctly recogniz
evidence that confirms their current belief. Compared to the correct statistical method, Bayesian updating
this behavior is biased toward confirming the initial belief. Rabin and Schrag showed that, in some cases
even an infinite amount of evidence would not necessarily overcome the effects of confirmatory bias; over
time a person may conclude, with near certainty, that an incorrect belief is true.

The second usage of the tewwonfirmation biasapplies to a study performed by Wad#?! which
became known as tt#&-4—6 TaskIn this study subjects were asked to discover a rule known to the experi-
menter. They were given the initial hint that the sequence 2—4—6 was an instance of this rule. Subjects hac
to write down sequences of numbers and show them to the experimenter who would state whether they dic
or did not, conform to the rule. When they believed they knew what the rule was, subjects had to write it
down and declare it to the experimenter. For instance, if they wrote down the sequences 6-8-10 and 3-5—
and were told that these conformed to the rule, they might declare that the ruteiméers increasing by
two. However, this was not the experimenters rule, and they had to continue generating sequences. Waso
found that subjects tended to generate test cases that confirmed their hypothesis of what the rule was. Fe
subjects generated test cases in an attempt to disconfirm the hypothesis they had. Several subjects hac
tendency to declare rules that were mathematically equivalent variations on rules they had already declarec

8 10 12: two added each time; 14 16 18: even numbers in

order of magnitude; 20 22 24: same reason; 1 3 5: two

added to preceding number.

The rule is that by starting with any number two is added each
time to form the next number.

2 6 10: middle number is the arithmetic mean of the other two;

1 50 99: same reason.

The rule is that the middle number is the arithmetic mean of the
other two.

3 10 17: same number, seven, added each time; 0 3 6;

three added each time.

The rule is that the difference between two numbers next to each
other is the same.

12 8 4: the same number subtracted each time to form the next
number.

The rule is adding a number, always the same one to form the
next number.

1 4 9: any three numbers in order of magnitude.

The rule is any three numbers in order of magnitude.

Sample 2-4-6 subject protocol. Adapted from Wason.['*7%]

140 v 1.0a June 16, 2005

16 Human characteristics Introductiom

U H: subjects hypothesis
T: target rule
U: all possible events
Case 1
8] U
Case 2 Case 3
8] \)
Case 4 Case 5

Figure 0.36: Possible relationships between hypothesis and rule. Adapted from Kldy#ihan.

The actual rule used by the experimenter was “three numbers in increasing order of magnitude”.

These finding have been duplicated in other studies. In a study by Mynatt, Doherty, and T{8ney,
subjects were divided into three groups. The subjects in one group were instructed to use a confirmatory
strategy, another group to use a disconfirmatory strategy, and a control group was not told to use any strat-
egy. Subjects had to deduce the physical characteristics of a system, composed of circles and triangles, by
firing particles at it (the particles, circles and triangles, appeared on a computer screen). The subjects were
initially told that “triangles deflect particles”. In 71% of cases subjects selected confirmation strategies. The
instructions on which strategy to use did not have any significant effect.

In a critique of the interpretation commonly given for the results from the 2-4—-6 Task, Klayman and
Hal"18l pointed out that it had a particular characteristic. The hypothesis that subjects commonly generate
(numbers increasing by tydrom the initial hint is completely contained within the experimenters rule,
case 2 in Figure 0.36. Had the experimenters rule lb@en numbers increasing by twthe situation would
have been that of case 3 in Figure 0.36.

Given the five possible relationships between hypothesis and rule, Klayman and Hu analyzed the possible
strategies in an attempt to find one that was optimal for all cases. They found that the optimal strategy was a
function of a variety of task variables, such as the base rates of the target phenomenon and the hypothesized
conditions. They also proposed that people do not exhibit confirmation bias, rather people have a general
all-purpose heuristic, theositive test strategywhich is applied across a broad range of hypothesis-testing
tasks.

A positive test strategiests a hypothesis by examining instances in which the property or event is ex-
pected to occur to see if it does occur. The analysis by Klayman and Hu showed that this strategy performs
well in real-world problems. When the target phenomenon is relatively rare, it is better to test where it
occurs (or where it was known to occur in the past) rather than where it is not likely to occur.

A study by Mynatt, Doherty, and Drag@ff! suggested that capacity limitations of working memory
were also an issue. Subjects did not have the capacity to hold information on more than two alternatives in
working memory at the same time. The results of their study also highlighted the fact that subjects process
the alternatives imaction(what to do) problems differently than inference(what is) problems.

June 16, 2005 v1.0a 141

_ Introduction 16 Human characteristics

reasoning ability
age-related

developer
personality

Myers-Briggs
Type Indicator

Karl Poppel®8 pointed out that scientific theories could never be shown to be logically true by general-
izing from confirming instances. It was the job of scientists to try to perform experiments that attempted to
falsify a theory. Popper’s work on how a hypothesis should be validated has become the generally acceptet
way of measuring performance (even if many scientists don’t appear to use this approach).

The fact that people don't follow the hypothesis-testing strategy recommended by Popper is seen, by
some, as a deficiency in peoples thinking processes. The theoretical work by Klayman and Hu shows tha
it might be Poppers theories that are deficient. There is also empirical evidence showing that using dis:
confirmation does not necessarily improve performance on a deduction task. A study by Tweney, Doherty,
Worner, Pliske, Mynatt, Gross, and Arkkélittél showed that subjects could be trained to use a disconfir-
mation strategy when solving the 2—4-6 Task. However, the results showed that using this approach did no
improve performance (over those subjects using a confirmation strategy).

Do developers show a preference toward using positive test strategies during program comprehension
What test strategy is the best approach during program comprehension? The only experimental work that ha
addressed this issue used students in various stages of their academic study. A study by Teasley, Leventh
Mynatt, and Rohimaf?”"] asked student subjects to test a program (based on its specification). The results
showed that the more experienced subjects created a greater number of negative tests.

16.2.8.11 Age-related reasoning ability
It might be thought that reasoning ability declines with age, along with the other faculties. A study by Ten-
tori, Osherson, Hasher, and M&/° showed the opposite effect; some kinds of reasoning ability improving
with age.

Consider the case of a person who has to decide between two alternatives, A and B (e.g., vanilla anc
strawberry ice cream), and chooses A. Adding a third alternative, C (e.g., chocolate ice cream) might entice
that person to select C. A mathematical analysis shows that adding alternative C would not cause a chang
of preference to B. How could adding the alternative chocolate ice cream possibly cause a person whc
previously selected vanilla to now choose strawberry?

So-calledirregular choiceshave been demonstrated in several studies. Such irregular choices seem to
occur among younger (18-25) subjects, older (60-75) subjects tending to be uninfluenced by the additior
of a third alternative.

16.3 Personality

To what extent does personality affect developers’ performance, and do any personality differences need t
be reflected in coding guidelines?

« A study by Turley and Biemat#1% looked for differences in the competencies of exceptional and non-
exceptional developers. They found the personal attributes that differentiated performances were:
desire to contribute, perseverance, maintenancelnfj icture view, desire to do/bias for action,
driven by a sense of mission, exhibition and articulation of strong convictions, and proactive role with
management. Interesting findings in another context, but of no obvious relevance to these coding
guidelines. Turley and Bieman also performed a Myers-Briggs Type Indicator (MBTi*fésin
their subjects. The classification containing the most developers (7 out of 20) wasIioJ€rt,
Intuitive, Thinking Judging, a type that occurs in only 10% of male college graduates. In 15 out of 20
cases, the type includedtrovert, Thinking There was no significance in scores between exceptional
and nonexceptional performers. These findings are too broad to be of any obvious relevance to coding
guidelines.

A study of the relationship between personality traits and achievement in an introductory Fortran
course was made by Kagan and Douth&i. They found that relatively introverted students, who
were hard-driving and ambitious, obtained higher grades then their more extroverted, easy-going
compatriots. This difference became more pronounced as the course progressed and became mol
difficult. Again these findings are too broad to be of any obvious relevance to these coding guidelines.

142 v 1.0a June 16, 2005

17 Introduction Introduction m

These personality findings do not mean that to be a good developer a person has to fall within these cate-
gories, only that many of those tested did.

It might be assumed that personality could affect whether a person enjoys doing software development,
and that somebody who enjoys their work is likely to do a better job (but does personal enjoyment affect
quality, or quantity of work performed?). These issues are considered to be outside the scope of th|s book
(they are discussed a little more in Staffing,). gwdelmes

Developers are sometimes said to be paranoid. One!&tiiyas failed to find any evidence for this g
claim.

Usage

17 Introduction

This subsection provides some background on the information appearing in the Usage subsections of thisusage
book. The purpose of this usage information is two-fold: Usagé
introduction
1. To give readers a feel for the common developer usage of C language constructs. Part of the process of
becoming an experienced developers involves learning about what is common and what is uncommon.
However, individual experiences can be specific to one application domain, or company cultures.

2. To provide frequency-of-occurrence information that could be used as one of the inputs to cost/benefit
decisions (i.e., should a guideline recommendation be made rather than what recommendatigg,might
be made). This is something of a chicken-and-egg situation in that knowing what measuremégegita
make requires having potential guideline recommendations in mind, and the results of measurg&ffignts
may suggest guideline recommendations (i.e., some construct occurs frequently).

Almost all published measurements on C usage are an adjunct to a discussion of some translator optimiza-
tion technique. They are intended to show that the optimization, which is the subject of the paper, is
worthwhile because some constructs occurs sufficiently often for an optimization to make worthwhile sav-
ings, or that some special cases can be ignored because they rarely occur. These kinds of measurements
are usually discussed in tlf@ommon implementatiosubsections. One common difference between the
measurements in Common Implementation subsections and those in Usage subsections is that the former
are often dynamic (instruction counts from executing programs), while the latter are often static (counts
based on some representation of the source code).

There have been a few studies whose aim has been to provide a picture of the kinds of C constructs that
commonly occur (e.g., preprocessor uskg@,embedded systefi&’)). These studies are quoted in the
relevant C sentences. There have also been a number of studies of source code usage for other algorithmic
languages, Assembl&f4 Fortranl’23 PL/1 374 Cobol'?220.641(measurements involving nonalgorithmic
languages have very different interé®%&234). These are of interest in studying cross-language usage, but
they are not discussed in this book. In some cases a small number of machine code instruction sequences
(which might be called idioms) have been found to account for a significant percentage of the instructions
executed during program executidft4!

The intent here is to provide a broad brush picture. On the whole, single numbers are given for the number
of occurrences of a construct. In most cases there is no break down by percentage of functions, source f files,
programs, application domain, or developer. There is variation across all of these (e.g., application @mmmm
and individual developer). Whenever this variation might be significant, additional information is Gi&ts.
Those interested in more detailed information might like to make their own measurements. guidelines

Many guideline recommendations apply to the visible source code as seen by the developer. For these
cases the usage measurements also apply to the visible source code. Effects of any macro expansion, con-
ditional inclusion, or#included header are ignored. Each usage subsection specifies what the quoted
numbers apply to (usually either visible source, or the tokens processed during translation phase 7).

June 16, 2005 v1.0a 143

_ Introduction 17 Introduction

source code

characterlgtlcs

coding o
guidelines
coding style

. common o
implemen-
tations
Ianguage
specification

application o
evolution

benchmarks o

In practice many applications do not execute in isolation; there is usually some form of operating system
that is running concurrently with it. The design of processor instruction sets often takes task-switching and
other program execution management tasks into account. In practice the dynamic profile of instructions
executed by a processor reflects this mix of us&§kas does the contents of its cad#fé!

17.1 Characteristics of the source code

All source code may appear to look the same to the casual observer. An experienced developer will be awar
of recurring patterns; source can be said to have a style. Aeveral influences can affect the characteristics c
source code, including the following:

» Use of extensions to the C language and differences, for prestandard C, from the standard (often
known as K&R C)Some extensions eventually may be incorporated into a revised version of the
standard; for instancdong long was added in C99. Some extensions are specific to the processor
on which the translated program is to execute.

« The application domainf-or instance, scientific and engineering applications tend to make extensive
use of arrays and spend a large amount of their time in loops processing information held in these
arrays; screen based interactive applications often contain many calls to GUI library functions and
can spend more time in these functions than the developer’s code; data-mining applications can spenc
a significant amount of time searching large data structures.

« How the application is structuredsome applications consist of a single, monolithic, program, while
others are built from a collection of smaller programs sharing data with one another. These kinds of
organization affect how types and objects are defined and used.

» The extent to which the source has evolved over tibeelopers often adopt the low-risk strategy
of making the minimal number of changes to a program when modifying it. Often this means that
functions and sequences of related statements tend to grow much larger than would be the case if the
had been written from scratch, because no restructuring is performed.

« Individual or development group stylistic usagéhese differences can include the use of large or
small functions, the use of enumeration constants or object macros, the use of the smallest integel
type required rather than always usihgt, and so forth.

17.2 What source code to measure?

This book is aimed at a particular audience and the source code they are likely to be actively working on.
This audience will be working on C source that has been written by more than one developer, has existec
for a year or more, and is expected to continue to be worked on over the coming years.

The benchmarks used in various application areas were written with design aims that differ from those of
this book. For instance, the design aim behind the choice of programs in the SPEC CPU benchmark sulite
was to measure processor, memory hierarchy, and translator performance. Many of these programs wer
written by individuals, are relatively short, and have not changed much over time.

Although there is a plentiful supply is C source code publicly available (an estimated 20.3 million C
source files on the W&B?), this source is nonrepresentative in a number of ways, including:

« The source has had many of the original defects removed from it. The ideal time to make these
measurements is while the source is being actively developed.

» Software for embedded systems is often so specialized (in the sense of being tied to custom hardware
or commercially valuable, that significant amounts of it are not usually made publicly available.

Nevertheless, a collection of programs was selected for measurement, and the results are included in thi
book (see Table 0.23). The programs used for this set of measurements have reached the stage that somebc

144 v 1.0a June 16, 2005

17 Introduction Introduction m

has decided that they are worth releasing. This means that some defects in the source, prior to the release,
will not be available to be included in these usage figures.

Table 0.23: Programs whose source code (i.e., theand . h files) was used as the input to tools (operating on either the visible
or translated forms) whose measurements was used to generate this books usage figures and tables.

Name Application Domain Version
gcce C compiler 2.95
idsoftware ~ Games programs, e.g., Doom

linux Operating system 2.4.20
mozilla Web browser 1.0
openafs File system 1.2.2a
openMotif ~ Window manager 222
postgresql Database system 6.5.3

Table 0.24: Source files excluded from the Usage measurements.

Files Reason for Exclusion

gcc-2.95/libio/tests/tfformat.c a list of approximately 4,000 floating constants
gcc-2.95/libio/tests/tiformat.c a list of approximately 5,000 hexadecimal constants

Table 0.25: Character sequences used to denote those operators and punctuators that perform more than one role in the syntax.

Symbol Meaning Symbol Meaning

++v prefix ++ --v prefix —-

v+t postfix ++ v-- postfix --

-v unary minus +v unary plus

*v indirection operator *p star in pointer declaration
&v address-of

:b colon in bitfield declaration ~ ?: colon in ternary operator

17.3 How were the measurements made?

The measurements were based two possible interpretations of the source (both of them static, that is, based
on the source code, not program execution):

» The visible sourceThis is the source as it might be viewed in a source code editor. The quoted results
specify whether thec or the .h files, or both, were used. The tools used to make these measurements
are based on either analyzing sequences of characters or sequences of preprocessing tokens (built from
the sequences of characters). The source of the tools used to make these measurements is available
on this book’s Web siteisww . knosof . co.uk/cbook/cbook.html.

» The translated sourceThis is the source as processed by a translator following the syntax and se-
mantics of the C language. Measurements based on the translated source differ from those based
on the visible source in that they may not include source occurring within some arms of conditional
inclusion directives, may be affected by the macro expansion, may not include all source file&ir§gjfion
distribution (because the make file does not require them to be translated), and do not include a few
files which could not be successfully translated by the tool used. (The tools used to measure the
translated source were based on a C static analysis®¥#)l.Every attempt was made to exclude
the contents of angincluded system headers (i.e., any header using<tledelimited form) from
the measurements. However, the host on which the measurements were made (RedHat 9, a Linux

June 16, 2005 v1.0a 145

1. Scope

distribution) will have some effect; for instance, use of a macro defined in an implementations header
may expand to a variety of different preprocessing tokens, depending on the implementation. Also
some application code contains conditional inclusion directives that check properties of the host O/S.

Note. The condition for inclusion in a table containi@@mmon token pairs involvinigformation was
that percentage occurrence of both tokens be greater than 1% and that the sum of both token frequencie
be greater than 5%. In some cases the second requirement excluded tokens pairs when the percenta
occurrence of one of the tokens was relatively high. For instance, the token giairacter-constant
does not appear in Table 860.3 because the sum of the token frequencies is 4.1 (i.e., 1.9+2.2).

The usage information often included constructs that rarely occurred. Unless stated otherwise a cut-off of
1% was used. Values for table entries suclotagr-typesvere created by summing the usage information
below this cut-off value.

1. Scope

standard
specifies form
and interpretation

Rationalt

1.1p1

Gosling*?Y

This International Standard specifies the form and establishes the interpretation of programs written inthe C 1
programming language.

Commentary

The C Standard describes the behavior of programs (not always in complete detail, an implementation is
given various amounts of leeway in translating some constructs). The behavior of implementations has to
be deduced from the need to implement the described behavior of programs.

The committee took the view that programs are more important than implementations. This principle
was and is used during the decision-making process of the C Standard Committee. Implementors sometime
argued that what their implementation did was/is important. The particular characteristics of an implementa-
tion can influence the usage of C language in programs, as can the characteristics of the host (e.g., the widt
of integer types supported). The Committee preferred to consider the extent of usage in existing programs
and only became involved in the characteristics of implementations when there was widespread usage of
particular construct.

Existing code is important, existing implementations are not.

CH++

This International Standard specifies requirements for implementations oftther@ramming language.

The G+ Standard does not specify the behavior of programs, but of implementations. For this standard the
behavior of G+ programs has to be deduced from this, implementation-oriented, specification.

In those cases where the same wording is used in both standards, there is the potential for a differen
interpretation. In the case of the preprocessor, an entire clause has been copied, almost verbatim, fror
one document into the other. Given the problems that implementors are having producing a translator tha
handles the completef€Standard, and the pressures of market forces, it might be some time before people
become interested in these distinctions.

Other Languages

This exact wording appears in both the Cobol and Fortran standards (except the language name is change
and Fortran programs are “expressed” rather than “written”). Some language definitions do not explicitly
specify whether they apply to programs or implementations. Pascal defines conformance requirements fo
both implementations and programs.

v1.0a June 16, 2005

1. Scope

We intend that the behavior of every language construct is specified here, so that all implementations of Java
will accept the same programs.

Common Implementations

The C language was first described in 1975 in a Bell Labs technical FépBithe successor to a languag@ase document
called B%%2)). The more commonly known bodkhe C Programming Languadsy Brian W. Kernighan and

Dennis M. Ritchi€%) was published in 1978. There was also a report published in the same year listing
recent changd$?? A second edition of this book was published after the ANSI C Standard was réffied

which updated its description of the language to follow that given in the newly published standard. There

has been no republication since the C99 revision of the Standard.

The first edition of the Kernighan and Ritchie book describes what became knod&RE. A large
number of implementations were based on the original K&R book, few of them adhering exactly to the
specification it contained, (because it was open to interpretation). The term K&R compiler is often applied
generically to translators that do not support function prototypes (an easily spotted characteristic).

As time has passed the number of implementations, in use, based on K&R C has dropped dramatically.
But there is still source code in use that was written to the K&R specification. Vendors like to keep their
customers happy by translating their existing code and many have adgedrt K&R options to their
products.

The base document for the library clause waslt®&4 /usr/group Standardublished by the /usr/group
Standards Committee, Santa Clara, California, USA.

Coding Guidelines

Coding guidelines invariably specify that ISO 9899 is the definitive document. The problem at the time of
writing, and for the next few years, is that most implementations in common use follow the 1990 document,
not the 1999 revision. Most of the changes involve additional functionality with very few changes to existing
behavior. So most of the updates that are needed to move to C99 can be handled as new material.

Up until the mid 1990s portability considerations meant having to keep an eye on maintaining a K&R
compatibility option. These days platforms that only support K&R are limited to a few niches, where there
is insufficient market interest to make it worthwhile to create an 1ISO-conforming implementation.

Many students who are taughtCare told that it is a superset of C. This was not always the case in
C90 and is not true in C99 (where there is additional support for functionality not available)inSbme
compiler vendors offer & compilerswitch on their @+ compiler. Such switches do not always have the
effect of creating a conforming C compiler. The issues of+€/€@mpatibility are dealt with in the €
subsections for each sentence.

2 It specifies

Commentary
This list is not exhaustive in that permission is explicitly given for an implementation to have extensfé'ﬁ\ngfanon

extensions

C++
The G+ Standard does not list the items considered to be within its scope.

Coding Guidelines

These coding guideline subsections sometimes specify recommendations to be followed by developers for
the usage of C language constructs.

3 — the representation of C programs; program
specify rep-
resentation

June 16, 2005 v1.0a

1. Scope

Commentary
ransla. s The representation qlescribe(_j is essentially the same as Wr_itte_n text, with special meaning attriputed tc
tionphase ~ certain characters, singly or in sequences (e.g., end-of-line indicators). The representation also include
source files 10:how the components of a C program are organized. In most cases files are used.

The representation of C programs occurs at many different levels. There is the representation as it appeat
to the developer, the bytes read from media by the operating system, and the pattern of bits held on storag
media. The representation we are interested in is the one that appears, to a developer, when viewed with &
editor that supports the characters required by the C Standard.

Common Implementations
EBCDIC The C language was first implemented on hosts that used the Ascii character set. The EBCDIC (Extendec
Binary-Coded-Decimal Interchange Code) character set is commonly used on mainframes and C can be
represented using this character set.
Use of C for embedded applications and the prominence of Japanese in this area meant that C was th
first standardized language to allow the writing of programs that contained other character sets.

— the syntax and constraints of the C language; 4

Commentary
These two sets of specifications are set in concrete and must be implemented, as written, by every conforn
conformance sz iNg implementation. These specifications appear in the Standard within clauses headed by "Syntax”, or by
constraintes "Constraints"”.

C++

1.1p1))
P The first such requirement is that they implement the language, and so this International Standard also defines

CHt.

While the specification of the C++ Standard includes syntax, it does not define and use the term constraints
What the C+ specification contains are diagnosable rules A conforming implementation is required to
diagnostic \as - -heck and issue a diagnostic if violated.

shall produce
Common Implementations

Some implementations add additional syntax. Adding additional constraints, or relaxing the existing ones
is not commonly seen in implementations, but it does occur.

Coding Guidelines
Constructs that violate C syntax or constraints are required to be diagnosed by a conforming implementation
Working programs rarely contain such constructs (unless there is a bug in the implementation; for instance,
gcc allows semicolons to be omitted in several places). Duplicating these requirements in coding guidelines
does not add value.

Implementations that provide extensions to standard C do not always fully define these extensions. In
particular they often define how an extension may be used but fail to define what the constraints on its use

extensionses1 gre, The coding guideline issues relating to use of extensions is discussed elsewhere.

cost/benefit

— the semantic rules for interpreting C programs; 5

Commentary

These rules appear under the clause hea8amanticsor sometime®escription along with definitions
conformance sz Of conformance. The behavior arising out of these semantic rules is what developers use to write programs

behavior
“ that have an external effect.

v1.0a June 16, 2005

1. Scope

The standard talks about an abstract machine and how programs are to be interpreted as-if running under
it. Unfortunately, the specifications given in the standard are not worded in a form that directly addresses
the properties of this machine; as such, this machine is never fully defined. However, the semantic rules
specified in the C Standard are not all set in stone. An implementation may be required to select among
several alternatives (these form the category of unspecified behaviors), chose its own behavior (these form
the category of implementation-defined behaviors), or the standard may not impose any requirements on the
behavior (these form the category of undefined behaviors).

C++
The C+ Standard specifies rules for implementations, not programs.

Coding Guidelines

A good first approximation to a set of coding guidelines is to recommend against the use of constructs whose
semantic rules can vary across implementations (Annex J summarizes these and the majority of the rules in
the MISRA C guidelines are based on this principle). While many of these Coding guideline subseeisans
discuss the effect of implementation differences, these are only treated as a possible contributing fggtar,to

the primary consideration (i.e., cost) and not as a rationale in their own right. o odations

selecting

6 — the representation of input data to be processed by C programs;

Commentary

The C language had its beginnings in solving practical problems. Ignoring the representational issues of data

was not a viable option. The Committee did adopt a specification for a set of I1/0O concepts (e.g., streams,

binary and text files) and functions for manipulating them into the C library (the base document préigigied

the underlying models). 1pase docu-
The underlying unit of input is the byte. The standard does not require that any sequence of bits within

any byte have a particular interpretation (the functions provided bydhgpe . h> header can be applied to

them, just like any other numeric quantity).

Other Languages

Some language standards committees have taken the view that /O was not an important aspect of the
language and provided a minimal set of functionality in this area, saying nothing about representational
issues. In other languages, for instance Cobol, I/O is a significant part of that languages’ specification.

CH++
The G+ Standard is silent on this issue.

Common Implementations
A form of input not explicitly dealt with in the standard is the reading/writing data from/to registers, or I/O
ports. This is a common form of I/O in freestanding environments.

Many implementations that support such functionality usevtilatile type qualifier or some extensidﬁi{ggq”a‘i“ef
that allows objects to be placed at known locations in storage; reading values from such objects cause input
to take place. Here the representation of the input value is interpreted according to the type of object through
which it is accessed.

Coding Guidelines

The issues involved in converting this input data into some internal form is an application domain issue
that is outside the scope of these coding guidelines. For instance, a floating-point number presented as a
sequence of characters, on an input stream, may contain more accuracy than can be represented by thgdgst.

There is a guideline recommendation dealing with the use of representation information. }g}ir%gtiigh
using

7 — the representation of output data produced by C programs;

June 16, 2005 v1.0a

m 1. Scope

Commentary
The standard does not specify any representation in terms of bit patterns, or pixels on a display device
However, the standard does specify some ordering requirements on output data. Data written out can b
textstream read back in to produce the same value. Output written to a display device will appear in the order it is
writing di- 2t written (but nothing is said about left-to-right, right-to-left, top-to-bottom, or any other visible ordering on
e the device).
streams C supports two forms of representation on output, text and binary. Text I/O is structured into lines of
textstream characters (there can be a great deal of variability in the external representation of characters written to tex
binary stream streams), while binary I/O is an ordered sequence of bytes.

Other Languages

In some application domains organizing the output data is a substantial part of the problem. Some language:
for instance Cobol, have mechanisms that provide application domain related control (in the case of Cobol
the formatting of numeric quantities) of the output produced by a program.

Common Implementations
In most cases, implementations use the same representation for output data as they use for input data.

Coding Guidelines

The coding guideline subsections only discuss the representation of output data to the extent that it may be
used as input data to other programs written in C.

Iimitsfy — the restrictions and limits imposed by a conforming implementation of C. 8
specify
spociy " Commentary

_ The Committee recognized that all implementations impose some limits on the size of programs that can
e%“éj&%i “® be translated. They decided to face up to this issue by specifying minimum requirements. By specifying
translaﬁﬁoﬁ 273 a list of limits, the Committee is attempting to guarantee a minimal level of support, for programs, by all
conforming implementations. The limits were seen as a floor that implementations should strive to exceed
not as a ceiling they could stop at.
Since the C90 Standard was written, the average amount of memory available to translators, on the me
jority of hosts, has increased significantly. For C99 the nominal translator host memory limit was increased

to 512 K.

C9a0

The model of the minimal host expected to be able to translate a C program was assumed to have 64 K o
free memory.

CH++

Annex B contains an informative list of implementation limits. However, tlheS&tandard does not specify

any minimum limits that a conforming implementation must meet.

Common Implementations

Few implementations document all the limits they impose. This is usually because of the use dynamic data
structures, which means that their only fixed limit is the amount of memory available during translation.

This International Standard does not specify 9

Commentary
The C committee is up front about what the C Standard is not about.

CH++
The G+ Standard does not list any issues considered to be outside of its scope.

v1.0a June 16, 2005

1. Scope

Other Languages

Some languages standards include a list of items not specified by their respective documents, while others
do not. Many of the items listed in the C Standard also appear in the Fortran Standard.

Coding Guidelines

A set of coding guideline recommendations cannot hope to cover every issue that occurs in sourocc%d%ode.
Delimiting the areas not covered by a set of guidelines is as important as specifying those areas covgi@fines

background to

10 — the mechanism by which C programs are transformed for use by a data-processing system; program
transformation
Commentary mechanism

The standard uses the temnanslator to disassociate itself from known implementation techniques for
transforming programs, such as compilers and interpreters. There is no requirement that the transformation
process use programs that have been written in C, although the library does contain many of the support
functions needed in the implementation of such a translator.

All suggestions requiring some mechanism to exist for passing options to a translator, at translation-time,
were turned down by the Committee.

One proposal long entertained by the C89 Committee was to mandate that each implementation have a Rationale
translation-time switch for turning off extensions and making a pure Standard-conforming implementation.

It was pointed out, however, that virtually every translation-time switch setting effectively creates a different
“implementation”, however close may be the effect of translating with two different switch settings. Whether

an implementor chooses to offer a family of conforming implementations, or to offer an assortment of non-
conforming implementations along with one that conforms, was not the business of the C89 Committee to
mandate. The Standard therefore confines itself to describing conformance, and merely suggests areas

where extensions will not compromise conformance.

Many existing translators operate in a single pass and continued support for this form of implementaitig@angntation
consideration for many members of WG14 when considering the specification of C syntax and semantic&%'® Pass

Other Languages
Some standards use the tdanguage processdp define what C calls a translator.

Common Implementations

The most common transformation mechanism (implementation technique) is to compile the program’s
source code to some form of machine code. This machine code could represent the instructions of a real
processor (in the sense of being able to hold it in one’s hand), or some virtual machine whose operations
are performed in software (usually called an interpreter). In a few cases processors have been designed to
execute a representation of some language directly. The Bell Labs CRISP prBeBssas designed to
efficiently support the execution of translated C programs (although the extent to which its instruction set
might be claimed to b€-like is open to debate); the Symbolics 3600 processor used Lisp as its machine
languagéd?*'®! the Novix NC401634 used Forth as its instruction set.

The ability to execute source code on a line-by-line basis is rarely provided (the Extensible Interactive C
systenit>?l is an exception). In such an approach the standard still requires (if a vendor wanted to claim that
their product was a conforming implementation) that the entire program’s source code, even the unexecuted
portions, be analyzed for syntax and constraint violations. As well as providing an interactive mode, the
Extensible Interactive C system also provides a batch mode.

An advantage of the virtual machine approach is that the generated code can be executed unchanged
on a wide variety of different processors, given the availability of a software interpreter. This is how Java
achieves its portability. Another advantage of this approach is the compactness of the generated code. In
applications where code size is more important than performance, it can be the deciding factor in choosing
an interpretive approach.

June 16, 2005 v1.0a

1. Scope

cacheo

#include 1879
places to
search for
macro 1912
define object-like

#include 1879
places to

search for

program 148
startup

The performance advantage obtained from using a cache shows how the execution time characteristic
of many applications is to repeatedly execute the same sequences of instructions within short time periods
It is possible to make use of this execution time characteristic to have the best of both worlds— execution
performance and compact code. The less-frequently executed portions of a program exist in virtual machine
code form and the frequently executed portions in host processor machine code. For a VLIW processor
Hoogerbruggé’® was able to obtain a 50% reduction in code size for a negligible increase in execution
time.

Whatever the mechanism used to transform C programs, it will invariably support some feinaod
-D options. These two options are almost universally used by C translators for specifying search paths for
#include files and for defining macros (on the command line), respectively.

Some translators access environment variables, of their host operating, to obtain the values of attribute
that vary between different hosts. For instance, search paths f¢itadude directive, or the number of
processors available to a program (when generating parallelizatioR28ble

Mixed forms of translation are being researched. Here translation of selected portions of a program oc:
curs during the execution of that program. The advantage of this dynamic compilation approach is that it
is possible to make use of runtime information to specialize the code, enhancing performance (provided
the specialized execution savings are greater than the overhead of a dynamic compilation). The DyC
toolset*?6:°138 has achieved some interesting results.

Many so-callechumber crunchingpplications are written in Fortran. A variety of parallel and vector
processors have been built to reduce the execution time of such programs, which has entailed producin
translators capable of vectorizing and parallelizing Fortran. One way to tap into this existing technology is
to translate C source to Fortr&se]

Downloading programs onto mobile devices, where they might only be executed once, is becoming more
common. In this environment, the consumption of electrical power is an important consideration. A study
by Palm and Mos®®! performed a cost/benefit analysis of translating code on the client or server, with or
without optimization. The energy quantities considered W&kg;,»;..4, €n€rgy consumed by the wireless
card while downloading cod€.,;:—downioad, €NErgy consumed by the client while waiting for code to
download; £yt —compite, €N€rgy consumed while waiting for code to compile or optimize on the server;
Ecompite, €nergy for compiling or optimizing on the client; att}.,.,,, energy for running the compiled
application on the client.

Coding Guidelines

Providing different options to a translator effectively creates different translators. The purpose of specifying
options is to change the behavior of a translator, otherwise there is no point in specifying it. Whether use
of an option radically changes the behavior of a translator (e.g., by enabling language extensions, changin
the alignment of objects in memory, or selecting different hosts as the execution environment) or has no
noticeable effect on the external output of the generated program image (e.g., it changes the format of the
listing file, or causes debug information to be generated), is outside the scope of these coding guidelines
Selecting translation-time options is part of the configuration management for a project.

Your author has never seen a set of coding guidelines that apply to make-files (apart from layout conven
tions) and would suggest that work on such a set is long overdue.

— the mechanism by which C programs are invoked for use by a data-processing system; 11

Commentary

The standard specifies the behaviors of C constructs. Specifying mechanisms for executing the gene
ated program images serves no useful purpose at the level of abstraction at which the standard operate
Whichever mechanism is used, for a hosted implementation, the standard requires that a function callec
main be called by the execution environment.

v1.0a June 16, 2005

1. Scope

Common Implementations
The output generated by a translator is usually written to a file. To indicate that this file can be executed, as a
program, it might be given the extensi@xe(under Microsoft Windows), or have it's execute-bit set (under
a POSIX-compliant operating systems such as Linux). Existing practices for invoking a program include
giving the program name on the command line, clicking on icons, and having the program automatically
executed on computer startup. ,
. . . . 3freestanding

In a freestanding environment the program image may be stored in read-only memory at a locafiOghiRtent
the host processor jumps to when it is initialized (which usually happens by default when power is"first
applied). The act of switching on, or resetting, is the mechanism for invoking the program.

12 — the mechanism by which input data are transformed for use by a C program; input data
e
Commentary ransformed

The standard is not concerned with how data is represented on media (which may be held on a hard disk,
paper tape, or any other media) or an interactive device. It is the implementations responsibility to map data
from the bits held on a storage device to the input values they represent to a C program.

Coding Guidelines
Programs that want to access devices at a level below that specified by the C Standard are outside the scope
of these coding guidelines.

Example
Specifying that a file is to be opened in text mode will cause the input to be treated as a series of lines. How
lines are represented by the host file system is outside the scope of the C Standard. 222end-of-line

13 — the mechanism by which output data are transformed after being produced by a C program;

Commentary

The Committee recognized that a program image may be executing within an encompassing environment.
How this environment transforms data after it has been output by a program is outside the scope of the C
Standard. The standard specifies an intended external effect for operations that perform output. It does not
specify afinal resting placdor this external effect. It may be characters appearing on a display device, or
bits being written to a storage device, or many other possibilities.

Common Implementations

At the host environment level (operating system) the sequences of bytes output by a C program are rarely
modified until they reach the lower-levels of device drivers. Bytes sent over serial links may have parity bits
added to them, blocks of bytes written to media may include file system information, and so on.

Coding Guidelines
Programs that are concerned with how output data are transformed once it has been generated by a program
image are outside the scope of these coding guidelines.

14 1) This International Standard is designed to promote the portability of C programs among a variety of data- footnotg
processing systems.

Commentary
The Rationale puts the case very well:

C code can be portable. Although the C language was originally born with the UNIX operating system on Rationale
the DEC PDP-11, it has since been implemented on a wide variety of computers and operating systems.
It has also seen considerable use in cross-compilation of code for embedded systems to be executed in a
free-standing environment. The C89 Committee attempted to specify the language and the library to be as

June 16, 2005 v1.0a

1. Scope

widely implementable as possible, while recognizing that a system must meet certain minimum criteria to be
considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the opportunity to write truly portable
programs, the C89 Committee did not want to force programmers into writing portably, to preclude the use of
C as a “high-level assembler:” the ability to write machine-specific code is one of the strengths of C. It is this
principle which largely motivates drawing the distinction between strictly conforming program and conforming
program (84).

Avoid “quiet changes.” Any change to widespread practice altering the meaning of existing code causes
problems. Changes that cause code to be so ill-formed as to require diagnostic messages are at least easy
to detect. As much as seemed possible consistent with its other goals, the C89 Committee avoided changes
that quietly alter one valid program to another with different semantics, that cause a working program to work
differently without notice. In important places where this principle is violated, both the C89 Rationale and this
Rationale point out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some numerical limits were added to the
Standard to give both implementors and programmers a better understanding of what must be provided by
an implementation, of what can be expected and depended on to exist. These limits were, and still are,
presented as minimum maxima (that is, lower limits placed on the values of upper limits specified by an
implementation) with the understanding that any implementor is at liberty to provide higher limits than the
Standard mandates. Any program that takes advantage of these more tolerant limits is not strictly conforming,
however, since other implementations are at liberty to enforce the mandated limits.

Keep the spirit of C. The C89 Committee kept as a major goal to preserve the traditional spirit of C. There
are many facets of the spirit of C, but the essence is a community sentiment of the underlying principles on
which the C language is based. Some of the facets of the spirit of C can be summarized in phrases like

* Trust the programmer.

» Don't prevent the programmer from doing what needs to be done.
» Keep the language small and simple.

 Provide only one way to do an operation.

* Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code generation is one of the most
important strengths of C. To help ensure that no code explosion occurs for what appears to be a very simple
operation, many operations are defined to be how the target machine’s hardware does it rather than by a
general abstract rule. An example of this willingness to live with what the machine does can be seen in the
rules that govern the widening of char objects for use in expressions: whether the values of char objects
widen to signed or unsigned quantities typically depends on which byte operation is more efficient on the
target machine.

One of the goals of the C89 Committee was to avoid interfering with the ability of translators to generate
compact, efficient code. In several cases the C89 Committee introduced features to improve the possible
efficiency of the generated code; for instance, floating point operations may be performed in single-precision
if both operands are float rather than double.

At the WG14 meeting in Tokyo, Japan, in July 1994, the original principles were re-endorsed and the following
new ones were added:

Support international programming. During the initial standardization process, support for internationaliza-
tion®® was something of an afterthought. Now that internationalization has become an important topic, it

v1.0a June 16, 2005

1. Scope

should have equal visibility. As a result, all revision proposals shall be reviewed with regard to their impact
on internationalization as well as for other technical merit.

Cadify existing practice to address evident deficiencies. Only those concepts that have some prior art should
be accepted. (Prior art may come from implementations of languages other than C.) Unless some proposed
new feature addresses an evident deficiency that is actually felt by more than a few C programmers, no new
inventions should be entertained.

Minimize incompatibilities with C90 (ISO/IEC 9899:1990). It should be possible for existing C implementa-
tions to gradually migrate to future conformance, rather than requiring a replacement of the environment. It
should also be possible for the vast majority of existing conforming programs to run unchanged.

Minimize incompatibilities with C++. The Committee recognizes the need for a clear and defensible plan
for addressing the compatibility issue with C++. The Committee endorses the principle of maintaining the
largest common subset clearly and from the outset. Such a principle should satisfy the requirement to
maximize overlap of the languages while maintaining a distinction between them and allowing them to evolve
separately.

The Committee is content to let C++ be the big and ambitious language. While some features of C++ may
well be embraced, it is not the Committee’s intention that C become C++.

Maintain conceptual simplicity. The Committee prefers an economy of concepts that do the job. Members
should identify the issues and prescribe the minimal amount of machinery that will solve the problems. The
Committee recognizes the importance of being able to describe and teach new concepts in a straight-forward
and concise manner.

During the revision process, it was important to consider the following observations:

* Regarding the 11 principles, there is a trade-off between them-none is absolute. However, the more
the Committee deviates from them, the more rationale will be needed to explain the deviation.

» There had been a very positive reception of the standard from both the user and vendor communities.

e The standard was not considered to be broken. Rather, the revision was needed to track emerging
and/or changing technologies and internationalization requirements.

* Most users of C view it as a general-purpose high-level language. While higher-level constructs can
be added, they should be done so only if they don’t contradict the basic principles.

e There are a good number of useful suggestions to be found from the public comments and defect
report processing.

Areas to which the Committee looked when revising the C Standard included:

* Incorporate AMDL1.

« Incorporate all Technical Corrigenda and records of response.

» Current defect reports.

* Future directions in current standard.

» Features currently labeled obsolescent.

« Cross-language standards groups work.

¢ Requirements resulting from JTC 1/SC 2 (character sets).

e The evolution of C++.

» The evolution of other languages, particularly with regard to interlanguage communication issues.

June 16, 2005 v1.0a

1. Scope

coding o
guidelines
introduction

» Other papers and proposals from member delegations, such as the numerical extensions Technical
Report which was proposed by J11.

» Other comments from the public at large.
* Other prior art.

C++
No intended purpose is stated by therGtandard.

Coding Guidelines
What are coding guidelines designed to promote?

The first paragraph on page one of a coding guidelines document shall state the purpose of those

ISO Direc-

guidelines and the benefits expected to accrue from adherence to them.

It is intended for use by implementors and programmers. 15

Commentary
One argument, used by the Committee, against the use of a formal definition language for specifying the
requirements, in the standard, was that programmers would have difficulty understanding it. Given the small
number of copies of the document actually sold by standards bodies, this seems to be a moot point. Thi:
situation may change with C99 thanks to a standards organization in the USA being willing to sell electronic
copies at a reasonable price.

Although written using English prose, the wording of the standard is highly stylized. Readers need to
become familiar with the conventions used if they are to correctly interpret its contents. The ISO directives
also require that:

tives, part 3 To achieve this objective, the International Standard shall

treaty 14

coding o
guidelines
introduction

program

o
comploy

size

— be comprehensible to qualified persons who have not participated in its preparation.

During the initial development of the C Standard by the ANSI committee, the idea of the document being a
treatybetween implementor and developer was voiced by many members of that committee. The Rationale
discusses this issue. Although many members of the ISO C committee also hold this view of a standard
being a treaty, there are some members who view the document as being a specification.

Coding Guidelines
Who are the intended audience of these coding guidelines?

They are intended to be read by managers wanting to select a set of guideline recommendations applic:
ble to their business model, authors of local coding guideline documents and training materials, and vendor:
producing tools to enforce them. While some developers may chose to read these coding guidelines for edt
cational purposes, there is no obvious cost/benefit justification for requiring all developers to systematically
read them.

— the size or complexity of a program and its data that will exceed the capacity of any specific data- 16
processing system or the capacity of a particular processor;

v1.0a June 16, 2005

2. Normative reference

Commentary

The standard does not require an implementation to fail to translate and execute a program that exceeds a
size or complexity (how complexity might be measured is not specified) limit. Although such a require-
ment could increase program portability (they would have to be rewritten to reduce their size or complexity,
making it more likely that they would be able to execute on a larger range of hosts). However, restricting
those programs that may be translated for these reasons is counterproductive. Some translation 1?&11%& ief-
fectively specify minimum bounds on program and data size that must be translated and executed' by an
implementation. However, they are lower, not upper limits.

Common Implementations
It is not usually the size or complexity of programs that give translators problems. Optimizers like to keep
all the information associated with a given function in memory while it is being translated. Functions that
are large (complexity itself is rarely a problem) run the risk of having the translator run out of memory while
generating machine code for them.

During execution all programs have a limit on the memory available to them to allocate for object storage.
Most implementations will allocate storage until insufficient is available; problem execution usually fails in
some way at this point.

Coding Guidelines

Programs that are too large or complex to be translated are fail-safe in the sense that developer attention is
needed to solve the problem. Ensuring that programs do not run out of storage during execution, or that

their execution terminates within a given time frame, are issues that are outside the scope of these coding
guidelines. Some coding guideline documents address the storage capacity issue by prohibiting the use of
constructs that prevent a programs total storage requirements from being known at translatitil time.

17 — all minimal requirements of a data-processing system that is capable of supporting a conforming imple-
mentation.
Commentary
This statement is not quite true. When deciding on values for the minimum translation limits, thézifémuen
Committee had in mind a translation host with a total of 256 K of memory. The requirements needed to sup—
port a conforming implementation are considered to be a quality-of-implementation issue. Implementation
vendors are left to respond to customer demands.

Common Implementations
Implementations have been created on hosts having a total memory size of 64 K.

2. Normative references

18 The following normative documents contain provisions which, through reference in this text, constitute provi- Normative
sions of this International Standard. references

Commentary
A normative reference is the one that carries the same weight as wording in the standard itself. An informa-
tive reference is just that, informative.

Just as the Standard proper excludes all examples, footnotes, references, and informative annexes, this Rationale
Rationale is not part of the Standard. The C language is defined by the Standard alone. If any part of this
Rationale is not in accord with that definition, the Committee would very much like to be so informed.

The I1SO Directives do not permit tiéormative referenceslause to contain

« documents that are not publicly available,

June 16, 2005 v1.0a

2. Normative references

Bibliography
defect report o

Embedded C TR

» documents to which only informative reference is made, or
» documents that have merely served as references in the preparation of the standard.

These kinds of documents may be listed in a bibliography. Other normative documents, not listed here, car
be created through the mechanism of Defect Reports (DRs) raised against wording in the existing standard
document. A DR can be raised by a National Body (a country who is a P, Participating, member of SC22),
the Project Editor, or the convener of WG14.

The C committee tries to deal with DRs during the meeting immediately following their submission. The
response might be to agree that there is a problem with existing wording in the standard and to provide
amended wording, or to say that the issue described is not considered a problem with the standard. Thi
committee can chose to add additional material to the standard by issuing an Amendment (such an Amenc
ment requires a new work item, which needs the support of five P member countries before it can go ahead;
There was one Amendment for C90, dealing with wide character issues.

An ISO committee can also chose to issue Technical Reports (TRs). Work has started on a TR relating
to C99 (theEmbedded echnical Repol®?). It deals with embedded systems issues (fixed-point types,
differentiating different kinds of memory, saturation arithmetic, etc.). Up-to-date information on the C
Standard can be found at the official Web sit@y.open-std.org/jtcl/sc22/wgl4/.

Coding Guidelines
Referencing other documents, from within coding guidelines, could mean the reader has to spend significan
time obtaining a copy of that reference. In many cases readers are unlikely to invest the effort needed tc
locate the referenced document.

Prior to C99 the cost of obtaining a copy of the C Standard was relatively high. The introduction of
electronic distribution, and support from ANSI, has made a much lower-cost copy of the standard available.
It is now realistic for guidelines to assume that their readers have access to a copy of the C Standard.

A coding guidelines document shall try to minimize references to other documents; if necessary, by

Dated references

including the relevant information in the guidelines document, perhaps in an annex.

Understanding the issues behind most DRs requires a close reading of the wording in the standard an
usually involve situations that do not occur very often. In theory most DRs will not be of interest because
use of constructs should not be relying on close readings of the standard. In practice usage of particula
wording in the standard may be incidental, or the developer may not have read the wording closely at all.

The DRs raised against the C90 Standard are unlikely to have had any significant impact on programs
(a few implementations had to change the way they handled constructs). It is hoped that the DRs raisec
against C99 follow this pattern. Authors of coding guidelines documents might like to periodically check
the official log of DRs on the C Standard Web siteéw.open-std.org/jtcl/sc22/wgl4/.

A coding guidelines document is likely to be referred to by higher-level documents. The extent to which
such documents follow the cost/benefit aims of these coding guidelines, or are even known to be effective, is
unknown (although one study®® that experimentally looked at the consistency of ISO/IEC 15504 Software
Process Improvement found some interesting results).

For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 19

Commentary

Who knows what changes a future revision of a normative document might have. This sentence prevents
revisions of some normative documents having an unintended impact on wording in the current standard
This sentence is also explicitly stating a rule that is specified in the ISO directives.

C90
This sentence did not appear in the C90 Standard.

v1.0a June 16, 2005

2. Normative reference

C++

At the time of publication, the editions indicated were valid. All standards are subject to revision, and part]r92§l
to agreements based on this International Standard are encouraged to investigate the possibility of applying
the most recent editions of the standards indicated below.

The G+ Standard does not explicitly state whether later versions of standards do or do not apply. This
wording could be read to suggest that, for instance, agreements based on Btar@lard may reference
either the C90 library or the C99 library.

20 However, parties to agreements based on this International Standard are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below.

Commentary
ISO rules require that every five years the Committee responsible for a standard investigate: should the
standard be reconfirmed, should the standard be withdrawn, should the standard be revised. It typically
seems to take around five years to produce and revise a language standard, creating a 10-year cycle; most
other kinds of standards are either confirmed or are on a shorter cycle. Different standards can also be on
different parts of their cycle. It usually takes at least 12 months for some kind of formal update to a standard
to be adopted.

While parties may investigate the possibility of applying the most recent editions of standards, the
timescales involved in formally adopting them are such that, unless there is a very important issue, the
Committee may well decide to wait for the next revision of the standard to update the references.

Ca0
This sentence did not appear in the C90 Standard.

Coding Guidelines

It is unlikely that a revision of one of these standards will materially affect the C Standard. It is more likely
that a revision of one of these standards will affect a developer’s application domain. It is this wider issue
which is outside the scope of these guidelines, that is likely to be of more importance to an application.

21 For undated references, the latest edition of the normative document referred to applies.

Commentary
The referenced standards will contain a date of publication. The C Standard requires that the most up-to-date
version be applied.

C9a0
This sentence did not appear in the C90 Standard.

Coding Guidelines

A coding guidelines document shall specify which edition of the C Standard they refer to. They shall

also state if any Addendums, Defect Reports, or Technical Reports are to be taken into account.

22 Members of ISO and IEC maintain registers of currently valid International Standards.

Commentary
The 1ISO Web siteyww.iso.ch, is a good starting point.

June 16, 2005 v1.0a

2. Normative references

ISO 31-11

1ISO 8601 27

ISO 646

ISO 8859

1.2p1

ISO 2382

1.2p1

ISO 4217

EXAMPLE

currency

localization

Coding Guidelines

Putting coding guidelines documents under the same change control system as that used for source code
a good starting point for tracking revisions. However, the first priority should always be to make sure that
the guideline recommendations are followed, not inventing new procedures to handle their change control.

ISO 31-11:1992, Quantities and units— Part 11: Mathematical signs and symbols for use in the physical 23
sciences and technology.

Commentary

This is Part 11 of a 13-part standard. Even though it is 27 pages long it is a nonexhaustive list of mathemat
ical symbols. Part 1 of ISO 31, “Space and time”, is a useful companion to ISO 8601.

ISO/IEC 646, Information technology— SO 7-bit coded character set for information interchange. 24

Commentary
This standard assigns meanings to values 0x0 to 0x7f. There are national variants of this standard (e.g
Ascii).

There are also 8-bit coded character set standards (i.e., ISO 8859-1 through ISO 8859-16) which assig
meanings to the values 0x80 to 0xff (0x80—-0x9f specify control codes and 0xa0 to Oxff additional graph-
ics characters). 1SO 8859-1 is commonly calleatin-1 and covers all characters that occur in Danish,
Dutch, English, Faeroese, Finnish, French, German, Icelandic, Italian, Norwegian, Portuguese, Spanist
and Swedish. This standard was recently replaced by ISO 8859-15, Latin-9, which added support for the
Euro symbol and some forgotten French and Finnish letters. Values in the range 0x20 to Ox7e are always
used to represent the invariant portion of ISO 646 (the so-caitednational Reference Versipn

C++

ISO/IEC 10646-1:1993 Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 2382-1:1993, Information technology— Vocabulary — Part 1: Fundamental terms. 25

Commentary
This is a reference to part 1 of a 27-part standard. The other 26 parts define the vocabulary for a wide range
of computer-related areas.

C++

ISO/IEC 2382 (all parts), Information technology — Vocabulary

ISO 4217, Codes for the representation of currencies and funds. 26

Commentary

Quoting from its scope: “This International Standard provides the structure for a three letter alphabetic code
and an equivalent three-digit numeric code for the representation of currencies and funds.” Apart from an
example, the contents of this standard are not used within the C Standard. However, a translator vendor ma
need to use this standard to implement a locale. The document is shorter than its 31 pages suggest. Half «
it is written in French.

v1.0a June 16, 2005

2. Normative reference

CH++
There is no mention of this document in therGtandard.

27 1SO 8601, Data elements and interchange formats— Information interchange— Representation of dates 1SO 8601
and times.
Commentary

This standard specifies the presentation format for dates and times. It also covers issues such as whether
weeks start on Sunday or Monday, and which is week-1 of a year. The definition of terms is provided by
ISO 31-1, “Space and time”. A translator vendor may need to use this standard to implement a Iocalccaljeso 31-11

cale.h
C++

header
There is no mention of this document in therGtandard.

28 ISO/IEC 10646 (all parts), Information technology— Universal Multiple-Octet Coded Character Set (UCS). ISO 10646

Commentary

The ISO/IEC 10646 Standard uses a 32-bit representation, with the code positions divided into 128 groups of
256 planes with each plane containing 256 rows of 256 cells. An industrial consortium, known as Unicode
www.unicode.org, developed a 16-bit encoding that corresponded exactly to plane zero (known as the
Basic Multilingual Plane) of the 32-bit encoding used in ISO/IEC 10646. The two groups eventually merged
their efforts and at the time of this writing the Unicode encoding uses the range 0x000000 to Ox10FFFF.
The supported characters do not just include letters, numbers, and symbols denoting words or parts of
words, they also include symbols for non-words. For instaBe&\CK SPADE SUITU+2660)&, MUSIC
NATURAL SIGNU+266E)j, BLACK TELEPHONEKU+260E)&, andWHITE SMILING FACEU+263A)
©.

Common Implementations

Support for Unicode is more commonly seen than that for the full (or subset that is larger than Unicode)
ISO/IEC 10646 specification. Both specify three encoding forms, UTF (in Unicode this is an acronym for
Unicode Transformation Formatvhile in ISO/IEC 10646 it idJCS Transformation Formatof encoding
characters:

glouniversal

1. As a 32-bit value directly holding the numeric vallelTF-32 (this is the value used in UCNSs). charac.
syntax

2. As one, or two, 16-bit values (values in the range 0x0000-0xD7FF and OXEOOO—-OxFFFF goes in oneyTr-16
0x010000-0x10FFFF goes in two; values in the range 0xD800—0XDFFF in the first 16 bits indicate
that another value, in the range 0XDC00—-0xDFFF, followS)F-16.

3. As a sequence of one or more 8-bit valug3F-8. The following list shows the encoding used for UTF-8
various ranges of characters. For multibyte sequences, the number of leading 1's in the first octet
equals the number of octets in the sequence:

U+00000000-U+0000007F: OxXXXXXXX

U+00000080-U+000007FF: 110xxxxx 10XXXXXX

U+00000800-U+0000FFFF: 1110xxxx 10xxxxXX 10XXXXXX

U+00010000-U+001FFFFF: 11110xxx 10xxxxxX 10xxXXXX 10XXXXXX
U+00200000-U+03FFFFFF: 111110xx 10xxxxxxX 10xxxxxX 10xxxxXX 10XXXXXX
U+04000000-U+7FFFFFFF: 1111110x 10xxxxxX 10xxxxxx 10xxxxxxX 10xxxxxX 10XXXXXX

C++

1.2p1

June 16, 2005 v1.0a

3. Terms, definitions, and symbols

Dated ref- 19
erences

IEC 60559

ISO/IEC 10646-1:1993 Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 10646:2003 is not divided into parts and the Standard encourages the possibility of applying
the most recent editions of standards.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC 559:1989).

Commentary

The termlEEE floating pointis often heard. This usage came about because the original standards on this
topic were published by the IEEE. This standard for binary floating-point arithmetic is what many host
processors have been providing for nearly a decade. However, its use is not mandated by C99. See anne
F.1 for a discussion of the relationship between this standard and other related floating-point standards fron
which it was derived.

C90

This standard did not specify a particular floating-point format, although the values given as an example for
<float.h> were IEEE-754 specific (which is now an International Standard, IEC 60559).

C++
There is no mention of this document in therGtandard.

Common Implementations

The representation for binary floating-point specified in this standard is used by the Intel x86 processor fam:
ily, Sun SPARC, HP PA-RISC, IBM PowerPC, Hias DEG- Alpha, and the majority of modern processors
(some DSP processors support a subset, or make small changes, for cost/performance reasons). There
also a publicly available software implementation of this stanf&&td.

Other representations are still supported by processors (IBM 390 andakiBEG- VAX) having an
existing customer base that predates the publication the documents on which this standard is based. The:
representations will probably continue to be supported for some time because of the existing code that relie:
on it (the IBM 390 and HPwas DEG- Alpha support both their companies respective older representations
and the IEC 60559 requirements).

Coding Guidelines

There is a common belief that once the IEC 60559 Standard has been specified all of its required function
ality will be provided by conforming implementations. It is possible that a C program’s dependencies on
IEC 60559 constructs, which can vary between implementations, will not be documented because of this
common, incorrect belief (the person writing documentation is not always the person who is familiar with
this standard).

Like the C Standard the IEC 60559 Standard does not fully specify the behavior of every cdfStruct.
It also provides optional behavior for some constructs, such as when underflow is raised, and has optiona
constructs that an implementation may or may not make use of, such as double standard. C99 does nc
always provide a method for finding out an implementation’s behavior in these optional areas. For instance
there are no standard macros describing the various options for handling underflow.

3. Terms, definitions, and symbols

C90
The title used in the C90 Standard was “Definitions and conventions”.

For the purposes of this International Standard, the following definitions apply. 30

v1.0a June 16, 2005

3. Terms, definitions, and symb

Commentary

These definitions override any that may appear in other standards documents (including 1SO 2382). In
some cases terms used in the standard have a meaning that is different fropteihetinglish usage. For
instance, in:

int x_1,
X_2;

void f(void)
{
int x_1;

}

N o o & w NP

the objectx_1 andx_2, at file scope, are said to have the same scope. However, there is a regiort'tiEiffe
program text in which one of these identifiexs1, is not visible (because of a declaration of the same name
in a nested block).

C++

1.3p1
For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following definlFi
tions apply.

17p9
The following subclauses describe the definitions (17.1), and method of description (17.3) for the Iibrargl.
Clause 17.4 and clauses 18 through 27 specify the contents of the library, and library requirements and con-
straints on both well-formed-€ programs and conforming implementations.

Coding Guidelines

Some writers of coding guidelines find the definition of terms used in the C Standard hard to understand, or
at least think that their readers might. This belief then becomes the rationale for crelasseeaperienced,
reader friendlydefinition of terms. Your author knows of no published, or unpublished, survey of the ease,
or difficulty, developers have with various technical terms. Having two sets of definitions of terms is likely
to lead to confusion. There is no evidence that one set of terms is better, or worse, than any other.

The definition of terms, as defined in the C Standard and standards referenced by it, shall be used in

coding guideline documents.

terms
) S . defined wh
31 Other terms are defined where they appear in italic type or on the left side of a syntax rule. elnedwnere

Commentary

In most cases the first use of a term is also where it is defined and hence where it usually appears in italic
type.

C9a0

The fact that terms are defined when they appear “on the left side of a syntax rule” was not explicitly
specified in the C90 Standard.

June 16, 2005 v1.0a

1ISO 2382 25

1.3p1

Coding Guidelines

A coding guidelines document cannot assume that its readers will start at the front and read each rule in
turn. There are obvious advantages to collecting all terms, with a meaning specific to the guidelines, in an
index or collecting them together in an annex. This is a usability issue that is outside the scope of these
guidelines.

Terms explicitly defined in this International Standard are not to be presumed to refer implicitly to similar 32
terms defined elsewhere.

Commentary
The C Standard is absolving itself of any similar terms that may be defined in any other standard.

Coding Guidelines
A coding guideline shall state that the terms defined by the C Standard are the ones that apply to itself.

Terms not defined in this International Standard are to be interpreted according to ISO/IEC 2382-1. 33

Commentary

Terms defined in the C Standard take precedence. If the term is not defined there, refer to ISO/IEC 2382-]
(Part Il of ISO/IEC 2382 deals with mathematical and logical operations and is also a useful source of defi-
nitions). There has been discussion within the Committee on terms that are not defined by either documen
but are technical in nature. In these cases the common dictionary usage has been claimed to be applic
ble. The ISO Directives specify that the two dictionaride Shorter Oxford English Dictionaand The
Concise Oxford Dictionaryprovide the definitions of nontechnical words.

C++

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following defini-
tions apply.

The G+ Standard thus references all parts of the above standard. Not just the first part.

Coding Guidelines

While the above might appear to be a good sentence to include in a coding guidelines document, mos
developers are unlikely to have easy access to a copy of ISO/IEC 2382-1.

All technical terms used in a coding guidelines document shall be defined in that document.

Mathematical symbols not defined in this International Standard are to be interpreted according to ISO 31-11. 34

Commentary

The ISO/IEC 2382-11 Standard deals with mathematical and logical operations but is not referenced by the
C Standard. It is not known if there are any incompatibilities between this document and ISO 31-11.

3.1

access

access 35
(execution-time action) to read or modify the value of an object

v1.0a June 16, 2005

Commentary
While the behavior for most kinds of access are simple and easy to deduce, this innocent looking definition
hides several dark corners. For instance, does an expression that multiplies an oljecbdify that
object? Yes. Does accessing a bit-field that shares a storage unit with another bit-field also cause &f'at¥ess
to that other bit-field? WG14 are looking into creating a more rigorous specification of what it means to
access an object. A Technical Report may be published in due course (it will take at least two years). At
the time of this writing WG14 has decided to wait until the various dark corners have been more fully
investigated and the issues resolved and documented before making a decision on the form of publication.
The termreferenceis also applied tmbjects The distinction between the two terms is that progratggigrence
reference objects but access their values. An unevaluated expression may contain references to objects,
but it never accesses them. The tetasignate an objeds used in the standard. This term can involve a
reference, an access, or both, or neither. In the following:

1 int *p = 0;
2 (*&*p);

the Ivalue (*&*p) both accesses and references an object, namely the pointer ppjadt it does not
designate any object. The tedasignatelso focuses attention on a particular object under discussioneskor
instance, in the expressiain] there are the referencasn, anda[n]; the expression may or may not
access any or all af, n, anda[n]. But the discussion is likely to refer to the object designated(isy, not

its component parts.

C++

In C+ the termaccesss used primarily in the sense a€cessibility that is, the semantic rules dealing with
when identifiers declared in different classes and namespaces can be referred ta+ Bten@ard has a
complete clause (Clause 11, Member access control) dealing with this issue. White-tBaadard also
usesaccessn the C sense (e.g., in 1.8p1l), this is not the primary usage.

Common Implementations

Many of these corner cases involve potential optimizations that translator vendors might like to perform.
Some translators containing nontrivial optimizers provide options, selectable by developers, that control the
degree to which optimizations are attempted. Optimizations that may change the behavior of a construct
(from one choice of undefined, or unspecified behavior to another one) are usually only enabled at the higher,
try harder levels of optimization.

Example
In the following:

int f(int param)
{
struct {
volatile unsigned int meml:2;
unsigned int mem2:4;
volatile unsigned int mem3:6;
unsigned int mem4:1;
} mmap;

© ® N o O s W N P

=
o

return mmap.mem2 += param;

3

i
=

the membemem2 may be placed in the same storage uniasl and/ormem3. If the processor does not

have bit-field extraction instructions, it will be necessary to generate code to load one or more bytes to
obtain the value ofiem2. If the membeimenl is contained in one of those bytes, does an accessncf

also constitute an accessntem1?

June 16, 2005 v1.0a

modify
includes cases

sizeof 1112

operand evaluated

sizeof 1113

operand not
evaluated

Another issue is the number of accesses to a bit-field. Obtaining the valeadfequires a single, read,
access. But how many accesses are needed to mmo#i§? One to read the value, which is modified; a
store back intamem3 may require another read (to obtain the value of the other members stored in the same
storage unit; perhapsem4 in the preceding example); the modified valuenefi3 is inserted into the bit
pattern read and the combined value written back into the storage unit. An alternative implementation may
hang on to the value afem4 so that the second read access is not needed.

NOTE 1 Where only one of these two actions is meant, “read” or “modify” is used. 36
NOTE 2 “Modify” includes the case where the new value being stored is the same as the previous value. 37
Commentary

This specification only needs to be followed exactly when there is more than one access between sequenc
points, or for objects declared with the volatile storage class. As far as the developer is concerned, a
modification occurs. As long as the implementation delivers the expected result, it is free to do whatever it
likes.

Example
1 extern int glob;
2 extern volatile int reg;
3
4 void g(void)
5 {
6 reg *=1; /*
7 * Value of reg looks as if it is unchanged, but because
8 * it is volatile qualified an access to the object is
9 * required. This access may cause its value to change.
10 */
1 /*
12 * The following cannot be optimized to a single assignment.
13 */
14 reg=glob;
15 reg=glob;

16
17 glob += 0; /* Value of glob unchanged but it is still modified. */

18 /*

19 * glob modified twice between sequence points -> undefined behavior

20 */

21 glob = (glob += 0) + 4;

2 }
NOTE 3 Expressions that are not evaluated do not access objects. 38
Commentary

The termnot evaluatechere meansot required to be evaluated by the standahhplementations do not
have complete freedom to decide what not to evaluate. Reasons why an expression may not be evaluate
include:

« being part of a statement which is not executed,

 being part of a subexpression whose evaluation is conditional on other subexpressions within a full
expression, and

 being an operand of theizeof operator.

v1.0a June 16, 2005

If an implementation can deduce that the evaluation of an expression causes no side-effects, it can use the
as-if rule to optimize away the generation of machine code (to evaluate the expression). as-if rule

Common Implementations
The inverse of this rule is one area where translators that perform optimizations have to be careful. In:

1 a=Db+c;

b andc are accessed to obtain their values forttaperator. An optimizer might, for instance, deduce that
their sum had already been calculated and is still available in a register. However, using the value held in
that register is only possible if it can be shown that not accedsaryd c will not change the behavior of

the program. If either were declared with the volatile qualifier, for instance, such an optimization could not
be performed.

Coding Guidelines

Accessing an object only becomes important if there are side effects associated with that access; for instance,
if the object is declared with theolatile qualifier. This issue is covered by guideline recommendati@igquence
discussed elsewhere. points

all orderings
giv& same value
91.1code
Example shall affect
output

1 extern int i, j;
2 extern volatile int k;
3
4 void f(void)
5 {
6 /*
7 * Side effect of access to k occurs if the left operand
8 * of the && operator evaluates to nonzero.
9 */
10 if ((1 == 2) && (j == k))
11 A Y A
12 /%
13 * In the following expression k appears to be read twice.
14 * Only one of the subexpressions will ever be evaluated.
15 * There is no unspecified or undefined behavior.
16 */
17w 1= <3?2 k-7 :{-Kk);
18}
3.2
39 alignment alignment

requirement that objects of a particular type be located on storage boundaries with addresses that are par-
ticular multiples of a byte address

Commentary
In an ideal world there would be no alignment requirements. In practice the designers of some processors
have placed restrictions on the fetching of variously sized objects from storage. The underlying reason
for these restrictions is to simplify (reduce cost) and improve the performance of the processor. Some
processors do not have alignment requirements, but may access storage more quickly if the object is aligned
on a particular address boundary. N
The requirement that a pointer to an object behave the same as a pointer to an array of that 0bje1<1:5tr*§s}|-cqi Ve s
forces the requirement thai zeof(T) be a multiple of the alignment df. If two objects, having different """ ™"

June 16, 2005 v1.0a

pointer 554
tq void
same repre-
sentation and
alignment as

‘common ini- 1030
tial sequence

3.9p5

alignment 1403
addressable
storage unit

Motorola 56000

linkers 138

types, have the same alignment requirements then their addresses will be located on the same multiple c
a byte address. Objects of character type have the least restrictive alignment requirements, compared t
objects of other types. Alignment and padding are also behind the assumptions that need to be made for th
common initial sequence concept to work.

The extent to which alignment causes implementation-defined or undefined behavior is called out for
each applicable construct. Various issues relating to alignment were the subject of DR #074.

C++

Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

There is no requirement on a C implementation to document its alignment requirements.

Other Languages
Most languages hide such details from their users.

Common Implementations

Alignment is a very important issue for implementations. Internally it usually involves trade-offs between
storage and runtime efficiency. Externally it is necessary to deal with parameter passing interfaces anc
potentially the layout of structure members. The C language is fortunate in that many system interfaces are
specified in terms of C. This means that other languages have to interface to its way of doing things, not the
other way around.

Optimal code generation for modern processors requires implementations to consider alignment issue:
associated with cache lines. Techniques for finding and using the optimal memory alignment for the objects
used in a program is an active research 4.

The Motorola 5600833 allows its modulo arithmetic mode to be applied to pointer arithmetic operations
(used to efficiently implement a circular buffer; the wraparound effectively built into the access instruction).
The one requirement is that the storage be aligned on an address boundary that is a power of two greater the
or equal to the buffer size. So an array of 10 characters needs to be placed on a 16-byte boundary, while a
array of 100 characters would need to be on a 128-byte boundary (assuming they are to be treated as circul:
buffers). Translators for such processors often provide an additional type specifier to enable developers t
indicate this usage.

The Intel XScale architectuf8 has data cache lines that are start on a 32-byte address boundary. Ar-
ranging for aggregate objects, particularly arrays, to have such an alignment will help minimize the number
of stalls while the processor waits for data, and it also enables optimal use of the prefetch instruction. The
Intel x86 architecture has no alignment requirement, but can load multibyte objects more quickly if appro-
priately aligned. RISC processors tend to have strict alignment requirements, often requiring that scalar
objects be aligned on a byte boundary that is a multiple of their size.

Does the storage class or name space of an identifier affect its alignment?

Many implementations make no attempt to save storage, for objects having static storage duration, by
packing them close together. It is often simpler to give them all the same, worst-case, alignment. For hostec
implementations potential savings (e.g., storage saved, time to access) may be small; there don't tend to b
significant numbers of scalar objects with static storage duration. However, in those cases where freestan
ing environments have limited storage availability, vendors often go to great lengths to make savings. The
alignment of objects having static storage duration is sometimes controlled by the linker, which may need
to consider more systemwide requirements than a C translator (e.g., handling other languages or prograr
image restrictions). For example, the C translator may specify that all objects start on an even addres:
boundary; objects with automatic storage duration being placed on the next available even address after th
previous objects, but the linker using the next eighth-byte address boundary for objects.

v1.0a June 16, 2005

A hosts parameter-passing mechanism may have a minimum alignment requirement, for instance at least
the alignment ofint, and stricter alignment for types wider thaniart. Minimizing the padding between
different objects with automatic storage duration reduces the stack overhead for the function that defines
them. It also helps to ensure they all fit within any short addressing modes available within the instruction
set of the host processor. Unlike objects with static storage duration, most translators attempt to use an
alignment that is appropriate to the type of the object.

Themalloc function does not know the effective type assigned to the storage it allocates. It has tdipigtke
worst-case assumptions and allocate storage based on the strictest alignment requirements.

The members of a structure type are another context where alignment requirements can differ from the
alignment of objects having the same type in non-member contexts. L4 member

Most processor instructions operate on objects having a scalar type and any alignment requirements
usually only apply to scalar types. However, some processors contain instructions that operate on objects
that are essentially derived types and these also have alignment requirements (e.g., the Pentium streaveinge
SIMD instruction€%®)). The multiples that occur in alignment requirements are almost always a power of
two. On some processors the alignment multiple of a scalar type is the same as its size, in bytes.

Alignment requirements are not always constant during translation. Several implementations provide
#pragma directives that control the alignment used by translators. A common vendor extension for control-
ling the alignment of structure members is #ipack preprocessor directivgcc supports several extensions
for getting and setting alignment information.

* The keyword__alignof__, which returns the alignment requirement of its argument, for instance,

__alignof__ (double) might return 8.
» The keyword__attribute__ can be used to specify an objects alignment at the point of definition:

1 int x __attribute__((aligned(16))) = 0;

Coding Guidelines

Alignment is an issue that can affect program resource requirements, program interoperability, and source
code portability.

Alignment can affect the size of structure types. Two adjacent members declared with different scalar
types may have padding inserted between them. Ordering members such that those with the same type
are adjacent to each other can eliminate this padding (because the alignment of a scalar type is often a
multiple of its size). If many instances of an object having a particular structure type are created a large
amount of storage may be consumed and developers may consider it to be worthwhile investigating ways
of making savings; for instance, by changing the default alignment settings, or by using a vendor-ssipiphesht
#pragma.l'258 |f alignment is changed for a subset of structures there is always the danger that a declara-
tion in one translation unit will have an alignment that differs from the others. Adhering to the guideline
recommendation on having a single point of declaration reduces the possibility of this occurring. ~ 4wsidentifier

Some applications chose to store the contents of objects having structure types, in binary form, in files
as a form of data storage. This creates a dependency on an implementation and the storage layout it uses
for types. Other programs that access these data files, or even the same program after retranslation, need
to ensure that the same structure types have the same storage layout. This is not usually a probl@ﬁﬁ%@n
using the same translator targeting the same host. However, a different translator, or a different host, may do
things differently. The design decisions behind the choice of data file formats is outside the scope of these
coding guidelines. _

.739 pointer

Programs that cast pointers to point at different scalar types are making use of alignment requweﬁnmts
information, or lack of them. Porting a program which makes use of such casts to a processor with stficter”"
alignment requirements, is likely result in some form of signal being raised (most processors raise some

June 16, 2005 v1.0a

form of exception when an attempt is made to access objects on misaligned addresses). The cost of modif
ing existing code to work on such a processor is one of the factors that should have been taken into accour
when considering the original decision to allow a guideline deviation permitting the use of such casts.
Developers sometimes write programs that rely on different types sharing the same alignment require
minerto MeNts, e.g.int and long. There are cases where the standard guarantees identical alignments, but in

alignment 556

structures

represen- ses1 J€Neral there are no such guarantees. Such usage is making use of representation information and is cc
tationin- ared by a guideline recommendation.

formation
using

Example
Do all the following objects have the same alignment?

© ©® N o O~ W NP

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include <stdlib.h>

/a‘:

* #pragma pack

5/

struct

static
static
static

void f(unsigned char

{

S_1{

unsigned char mem_1;
int mem_2;
float mem_3;

};

unsigned char file_1;

int
float

int
float

unsigned char

int
float

file_2;
file_3;

param_1,
param_2,
param_3)

local_1, *p_uc;
local_2, *p_i;
local_3, *p_f;

p_uc = (unsigned char *)malloc(sizeof(unsigned char));
i (int *)malloc(sizeof(int));
(float *)malloc(sizeof(float));

b1 =
p_f
}

No, they need not, although implementations often chose to use the same alignment requirements for eac
scalar type, independent of the context in which it occurs. fididoc function cannot know the use to

which the storage it returns will be put, so it has to make worst-case assumptions.

© O N O O A W N R

11
12
13
14
15
16
17

/a“:

* Declare a union containing all basic types and pointers to them.

*/

union align_u {

/7‘:

char

short

int

long

long long
float
double

long double
void

c, *cp;
h, *hp;

i, *ip;

1, *1p;

11, *1lp;

£, *fp;

d, *dp;

1d, *1dp;
*Vp;

* Pointer-to function. The standard does not define any generic
* pointer types, like it does for pointer to void. The wording
* only requires the ability to convert. There is no requirement

v1.0a

June 16, 2005

18 * to be able to call the converted function pointer.

19 */

20 void (*fv) (void);

21 void (*fo)();

22 void (*fe)(dnt, ...);

23 };

24 /%

25 * In the following structure type, the first member has type char.
26 * The second member, a union type, will be aligned at least to the
27 * strictest alignment of its contained types. Assume that there
28 * is no additional padding at the end of the structure declaration
29 * than in the union. Then we can calculate the strictest alignment
30 * required by any object type (well at least those used to

31 * define members of the union).

32 */

33 struct align_s {

34 char c;

35 union align_u u;

36 };

37
38 #define _ALIGN_ (sizeof(struct _align_s) - sizeof(union _align_u))

3.3

40 argument argument
actual argument
actual parameter (deprecated)
expression in the comma-separated list bounded by the parentheses in a function call expression, or a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-
like macro invocation

Commentary

The termsargumentandparameterare sometimes incorrectly interchanged. One denotes an expression at
the point of call, the other the identifier defined as part of a function or macro definition.

C++

The G+ definition, 1.3.1p1, does not include the teracsual argumenaindactual parameter

Coding Guidelines
The termactual parameteis rarely used. While the standard may specify its usage as being deprecated, it
cannot control the terms used by developers. This term is not used within the standard.

Example

void g(int x, int y)

{

x=f(1); /* The literal 1 is the argument. */
y=M(x); /* The value of x is the argument. */

}

1 #define M(a) ((a) - (1))

2

3 int f(int b) /* The object b is the parameter. */
4 A

5 return b + 2;

6

7

8

9

PR e
N B O

3.4

June 16, 2005 v1.0a

3.4.1

behavior behavior 41
external appearance or action

Commentary

Common usage of the wottehaviorwould enable it to be applied to all kinds of constructs. By providing
this definition, the standard is narrowing down the range of possible uses to a specific meaning.
Rationall o terms unspecified behavior, undefined behavior, and implementation-defined behavior are used to cate-
gorize the result of writing programs whose properties the Standard does not, or cannot, completely describe.
The goal of adopting this categorization is to allow a certain variety among implementations which permits
quality of implementation to be an active force in the marketplace as well as to allow certain popular exten-

sions, without removing the cachet of conformance to the standard.

External appearances can take many forms. Interactive devices may display pixels, memory-mapped device
may open and close relays, or a processor may not be as responsive (because it is executing a program whc
_ purpose is to consume processor resources). The C Standard sometimes fully specifies the intended behavi
interac- 201 . . I
tive device and the ordering of actions (although this is not always unique). But in only one case does it discuss the
issue of how quickly a behavior occurs.

Coding Guidelines

Developers tend to use the wadbehaviorin its general, dictionary sense and include internal changes to
the program state. While this usage is not as defined by the C Standard, there is no obvious advantage i
trying to change this existing practice.

3.4.1

implementation- implementation-defined behavior 42
defined behavior hshecified behavior where each implementation documents how the choice is made

Commentary

”“Tj’;ﬂf}ﬁ;’r *In choosing between making the behavior of a construct implementation-defined or unspecified, the Commit

mer;gg'(f{; wo tee had to look at the ability of translator vendors to be able to meaningfully document their implementations

assignment 1,5, DEhavior. For instance, for assignment the order in which the operands are evaluated may depend on a ran
eperandeval- — of different conditions decided on during code optimization. The only way of documenting this behavior

uation order
being to supply documentation showing the data structures and algorithms used, an impractical proposition
C90

Behavior, for a correct program construct and correct data, that depends on the characteristics of the imple-
mentation and that each implementation shall document.

The C99 wording has explicitly made the association between the terms implementation-defined and un
specified that was only implicit within the wording of the C90 Standard. It is possible to interpret the C90
signed in-e31 - definition as placing few restrictions on what an implementation-defined behavior might be. For instance,

g o raising a signal or terminating program execution appear to be permitted. The C99 definition limits the

implementation-

defned POSSible behaviors to one of the possible behaviors permitted by the standard.

C++
The G+ Standard uses the same wording, 1.3.5, as C90.

v1.0a June 16, 2005

3.4.2 |V

Other Languages

The C Standard is up front, and in general explicitly specifies the behavior that may vary between imple-
mentations. Other languages are not always so explicit. A major design aim for Java was to make it free
of any implementation-defined behaviors. The intent is that Java programs exhibit the same behavior on all
hosts. It will take time to see the extent to which this design aim can be achieved in practice.

Common Implementations
Many vendors list all of the implementation-defined behavior in an appendix of the user documentation.
Coding Guidelines

Some implementation-defined behaviors have no effect on the behavior of the abstract machine. For in-
stance, the handling of thegister storage-class specifier can affect execution time performance, but the
program semantics remain unchanged. Some implementation-defined behaviors affect the execution time
characteristics of a conforming program without affecting its output; for instance, the layout of structure
members having a bit-field type. s

addressable
storage unit

The C Standard’s definition of a strictly conforming program is based on the output produced hywhgton-
program, not what occurs internally in the executing program image. Many coding guideline docurggt
contain a blanket recommendation against the use of any implementation-defined behavior. This jgguginm
plistic approach to guideline recommendations that is overly restrictive. image

Use of implementation-defined behavior shall be decided on a case-by-case basis. The extent to which

the parameters of these cost/benefit decisions occur on a usage-by-usage based, a project-by-project
basis, or a companywide-basis, is a management decision.

Coding guideline documents commonly recommend that a program’s dependency on any implementation-
defined behavior be documented. What purpose does such a guideline serve? Any well-written documenta-
tion would include information on implementation dependencies. The coding guidelines in this book do not
aim to teach people how to write documentation. That said, the list of implementation-defined behaviors in
annex J provides a good starting point.

Usage
Annex J.3 lists 97 implementation-defined behaviors.

43 EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a . EXAgAPIBE
signed integer is shifted right. S eagation

3.4.2

44 locale-specific behavior locale-specific
behavior that depends on local conventions of nationality, culture, and language that each implementation behavior
documents
Commentary

The concept of locale was introduced by the C Standard. It has been picked up and extended by IOSIX.
Some of the execution time behavior that was implementation-defined in C90 has become locale-specific

in C99. This allows programs that need to adapt to a locale to maintain a greater degree of standards

conformance. Use of locale-specific behavior does not affect the conformance status of a program, while

use of implementation-defined behavior means it cannot be strictly conforming (assuming that the program’s
output depends on it).

Rationale

June 16, 2005 v1.0a

3.4.3

universal 810
charac-
ter name

., syntax
identifier 791
UCN

EXAMPLE
locale-specific
behavior

While responding to a Defect Report filed against C89, the Committee came to realize that the term,
“implementation-defined,” was sometimes being used in the sense of “implementation must document” when
dealing with locales. The term, “locale-specific behavior,” already in C89, was then used extensively in C95
to distinguish those properties of locales which can appear in a strictly conforming program. Because the
presence or absence of a specific locale is, with two exceptions, implementation-defined, some users of the
Standard were confused as to whether locales could be used at all in strictly conforming programs.

A successful call to setlocale has side effects, known informally as “setting the contents of the current locale,”
which can alter the subsequent output of the program. A program whose output is altered only by such side
effects— for example, because the decimal point character has changed— is still strictly conforming.

A program whose output is affected by the value returned by a call to setlocale might not be strictly conform-
ing. If the only way in which the result affects the final output is by determining, directly or indirectly, whether
to make another call to setlocale, then the program remains strictly conforming; but if the result affects the
output in some other way, then it does not.

Common Implementations
A locale, other thariC", for which there are many common implementations is Japanese.

The POSIX locale registry is slowly beginning to accumulate information on the locales of planet Earth.
Both the Unix and Microsoft Windows host environments provide some form of interface to locale databases.
It is these locales that C implementations usually provide a means of accessing.

Coding Guidelines
There are two locale issues that relate to these coding guidelines:

1. The locale in which source code is translateflany coding guidelines relate to how developers
extract information from source code. Having the source code written in the locale of the reader is
likely to make this process easier. The issues involved in using identifiers that contain characters
other than those in the basic execution character set are discussed elsewhere.

2. The locale in which translated programs are executdsers want programs that adapt to their locales.
The priority given to ensuring that software satisfies user’s requirements is invariably much higher
than that given to satisfying coding guidelines.

Writing programs that depend on locale-specific behavior obviously reduces their portability to other locales.
There is also the possibility that expected behaviors will not be available if the locale is changed. However,
the issues involved in deciding when to use locale-specific behavior are outside the scope of these codin
guideline subsections.

Implementations do not always fully document their handling of locale-specific behavior. Locales are a
concept that is still evolving. To gain confidence in the behavior of an implementation, test programs need
to be written to verify the behavior is as documented. Dealing with partial documentation is outside the
scope of these coding guidelines.

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters 45
other than the 26 lowercase Latin letters.

Example
The character e-acute is a lowercase letter in a Latin-1 locale, but ntt'‘tHecale.

3.4.3

undefined behav-
ior

undefined behavior 46

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which this
International Standard imposes no requirements

v1.0a June 16, 2005

3.4.3 ¥

Commentary
. . 103conformin
The termnonportables discussed elsewhere. programsg

Although a sequence of source code may be an erroneous program construct, a translator is only1 Aréagﬁegng
to issue a diagnostic message for a syntax violation of a constraint violation. The erroneous data carpggeig:ton
during translation, or during execution. For instance, division by zero within a constant expression™8t“a
division operator whose right operand had been assigned a zero value during the execution of a previous
statement.

The C Standard does not contain any requirements for issuing diagnostics at execution time.
C90

Behavior, upon use of a nonportable or erroneous program construct or of erroneous data, or of indetermi-
nately valued objects, for which this International Standard imposes no requirements.

Use of an indeterminate value need not result in undefined behavior. If the value is read from an object that ™njeterminate

R s7strap repre-
has unsigned char type, the behavior is unspecified. This is because objects of type unsigned char are ** I\ /P®

required to represent values using a notation that does not support a trap representation. sl vi
567 unsigned
Common Implementations char

pure binary

While the C Standard may specify that use of a construct causes undefined behavior, developers may have
expectations of behavior or be unaware of what the C Standard has to say. Implementation vendors face cus-
tomer pressure to successfully translate existing code. For this reason diagnostic messages are not usually
generated at translation time when a construct causing undefined behavior is encountered.

The following are some of the results commonly seen when executing constructs exhibiting undefined
behavior:

» Asignal is raisedFor instanceSIGFPE on divide by zero, o6IGSEGV when dereferencing a pointer
that does not refer to an object.

» The defined behavior of the processor occuFr instance, two’s complement modulo rules for
signed integer overflow.

* The machine code generated as a result of a translation time decision is exdeotédstanceji =
i++; may have been translated to the machine d@d® i; STORE i; INC i; (instead ofINC i;
LOAD i; STORE i;, or some other combination of instructions).

Coding Guidelines

Developers are often surprised to learn that some construct, which they believed to have well-defined be-
havior, actually has undefined behavior. They often have clear ideas in their own heads of what the imple-
mentation behavior is in these cases and consider that to be the behavior mandated by the standard. This is
an issue of developers’ education and is outside the scope of these coding guidelines (although vendors of
static analysis tools may consider it worthwhile issuing a diagnostic for uses of such constructs).

Usage
Annex J.2 lists 190 undefined behaviors.

47 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable results, ugdﬁfined
to behaving during translation or program execution in a documented manner characteristic of the environ- p%si‘i’l')?é

ment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with
the issuance of a diagnostic message).

June 16, 2005 v1.0a

3.4.4

Commentary
This is only a list of possible behaviors; it is not intended to be a complete list. Behaving in a documented
manner, plus issuing a diagnostic, is often considered to be the ideal case.

Common Implementations

The two most common ways of handling a construct, whose behavior is undefined, are to issue a diagnosti
and to ignore it completely (the translator continuing to translate, or the execution environment delivering
whatever result happens to occur). Some translators prove options that allow the developer to select the
extent to which a translator will attempt to diagnose these constructs (e.gWétleoption ofgcc). Very

few implementations document any of their handling of undefined behaviors.

Some undefined behaviors often give consistent results, e.g., signed integer overflow. While in other
cases the behavior is understood but the results are completely unpredictable. For instance, when accessi
an object after its lifetime has ended, the common behavior is to access the storage previously assigned t
that object, but the value held in that location is unpredictable.

Most diagnostics issued during program execution (most implementations issue a few during translation)
are as a result of the program violating some host requirement in some way (for instance, a misaligned
access to storage) and the host issuing a diagnostic prior to terminating program execution.

Coding Guidelines

There are a some undefined behaviors that give consistent results on many processors, for instance, the res
represen- s6s.1 of a signed integer overflow. Making use of such behavior is equivalent to making use of representation
tationin-jnformation, which is covered by a guideline recommendation.

formation
using
ExéAl\fAPLdEb EXAMPLE An example of undefined behavior is the behavior on integer overflow. 48
ni n -
Havi%r © © 3 4 4
unspecified be- unspecified behavior 49
havior

use of an unspecified value, or other behavior where this International Standard provides two or more possi-
bilities and imposes no further requirements on which is chosen in any instance

» Commentary

imp'e";ee?itﬁgf,’”' The difference between unspecified (implementation-defined) and undefined is that the former applies to

behavior 5 correct program construct and correct data while the latter applies to an erroneous program construct o
erroneous data. Are there any restrictions on possible translator behaviors? The following expresses th
Committee’s intent:

Rationalt This |atitude does not extend as far as failing to translate the program.

The new wording was added by the response to DR #247.
C90

Behavior, for a correct program construct and correct data, for which this International Standard imposes no
requirements.

The C99 wording more clearly describes the intended meaning of theutespecified behavipgiven the
contexts in which it is used.

C++

1.3.13

v1.0a June 16, 2005

behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard.]

This specification suggests that there exist possible unspecified behaviors that are not delineated by the
standard, while the wording in the C Standard suggests that all possible unspecified behaviors are mentioned.

Common Implementations

Because there is no requirement to document the behavior in these cases, and the frequent difficulty of being
able to say anything specific, most vendors say nothing.

Coding Guidelines
For implementation-defined behaviors, it is possible to read the documented behavior. For unspecified
behaviors vendors do not usually document possible behaviors.
All nontrivial programs contain unspecified behavior; for instance, in the expréssigit is unspecified
whether the objedt is accessed before or after the objecBut, unless both objects are defined using the
volatile qualifier, the order has no affect on a programs output. uestype qualifier
A blanket guideline recommendation prohibiting the use of any construct whose behavior is unspecified
would be counterproductive. If the behavior of a construct is unspecified, but the behavior of the program
containing it is identical for all of the different possibilities, the usage should be regarded as acceptable. How
possible, different unspecified behaviors might be enumerated and the effects these behaviors have on the
output of a program is left to developers to deduce. This issue is also covered by a guideline recommegdadiente
discussed elsewhere. points

all orderings
give same value

Example

In an optimizing compiler the order of evaluation of expressions is likely to depend on context: What
registers are free to store intermediate values; What registers contain previously calculated values that can
be reused in the current expression? Documenting the behavior would entail describing all of the flow
analysis, expression tree structure, and code optimization algorithms. In theory the order of evaluation, for
each expression, could be deduced from this information. However, it would be impractical to carry out.

#include <stdio.h>
static int glob_1, glob_2;

int main(void)

{

if ((glob_1++, (glob_1+glob_2)) == (glob_2++, (glob_l+glob_2)))
printf("We may print this\n");

else
printf("or we may print this\n");

© 0 N e O A W N e

i
S)

}

.
s

Usage
Annex J.1 lists 50 unspecified behaviors.

50 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evalu- EXAMPLE
ted unspecified
ated. behavior
3.5
51 bit bit

unit of data storage in the execution environment large enough to hold an object that may have one of two
values

June 16, 2005 v1.0a

ISO 2382 25

byte 53

addressable unit

Commentary

Although it is the most commonly used representation in silicon-based processors, two-valued logic is not
the most efficient form of representation. The most efficient radix, in terms of representation space (number
of digits times number of possible values of each digit)e7! (i.e.,2.718...). The closest integral value

to e is 3. While using a ternary representation maximizes the efficiency of representation, there are practical
problems associated with its implementation.

The two states needed for binary representation can be implemented using a silicon transistor in its
off (very low-voltage, high-current) and saturated (high-voltage, very low-current) states. Transistors in
these two states consume very little power (voltage times current). Using transistors to implement a ternary
representation would require the use of a third voltage (for instance, midway between low and high). At such
a midpoint voltage, the current would also be mid-way between very low and high and the corresponding
power consumption would be significantly higher than the off and saturated states. Power consumption, ot
rather the heat generated by it, is a significant limiting factor in processors built using transistors.

Vendors have chosen to trade-off efficiency of representation for the lower power consumption needed
to prevent chips melting. Processors based on a binary representation are overwhelmingly used today. Th
definition of the C language reflects this fact.

C++
The G+ Standard does not explicitly define this term. The definition given in ISO 2382 is “Either of the
digits 0 or 1 when used in the binary numeration system.”.

Other Languages

The concept of a bit is a low-level one, intimately connected to the processor architecture. Many languages
do not get explicitly involved in this level of detail. The language of Carbon-based processors (at least on
planet Earth), DNA, uses a unit of storage that has one of four possible valgegtéd): A, C, G, andT.

Common Implementations

Processors rarely provide a mechanism for referencing a particular bit in storage. The smallest unit of
addressable storage is usually the byte. There are a few applications where the data is not byte-aligned ar
processors supporting some form of bit-level addressing are avafiéblautomatic mapping of C source

that performs its own manipulation of sequences of bits (using the bitwise operators) to use these processc
instructions is not yet available. But at least one research comfiféprovides support via what, to the
developer, looks like a function-call interface.

bgd . NOTE It need not be possible to express the address of each individual bit of an object. 52
aadress o
Commentary
tgrh{;‘,',;”‘ecg %2 The smallest object that is required to be addressable is one having character type. The number of bits it
CHAR BITz04 gych an object is defined by t@BAR_BIT macro, which must have a value greater than or equal to 8.
Common Implementations
Processors rarely support bit addressing, although a few of them have instructions for extracting a sequenc
of bits (that is not a multiple of a byte) from a storage location.
3.6
byte byte 53
addressable

unit

octet

addressable unit of data storage large enough to hold any member of the basic character set of the execution
environment

Commentary

A byte is traditionally thought of as occupying 8 bits. The technical term for a sequence of 8 ditetis
POSIX®8l defines a byte as being an octet (i.e., 8 bits). These standards also define thieyteramsl
characterindependently of each other.

v1.0a June 16, 2005

There is something of a circularity in the C Standard’s definition byte and character. TheGH&RIBIT soSharacter

single-byte
defines the number of bits in a character type and is required to have a minimum value of 8. The défififh®'"
of byte deals with data storage, while that for tiar type deals with type. hold any mer-

ber of execution
character set

Other Languages

The DNA encoding used in Carbon based processors usesjihyee*!] to form acodon The 64 possible

codons are used to represent different amino acids, which are used to make proteins, plus a representation
for stop

54 NOTE 1 It is possible to express the address of each individual byte of an object uniquely. byte
address unique
Commentary

What is an address? In most cases it is taken to be the value representation held in a pointer object. In some
cases a pointer object may not contain all the information needed to calculate an address. For instance, the
IAR PICmicro compilel®? provides access to more than 10 different kinds of banked storage. Point&Eg3d
this storage can be 1, 2, or 3 bytes in size. On such a host the address of an object is the combination of
the pointer value and information on the bank being referred to (which is encoded either in the instruction
accessing the byte or a status register).

There is no requirement that thddressable unibe the address returned by the address-of operator, with
the object as its operand. An implementation may choose to indirectly reference the actual storage used to
hold an object’s value representation via a lookup table, indexed by the value returned by the adé;ess-of,
operator. This index value is then thddressseen by programs. _

Objects are made up of one or more bytes and it is possible to calculate values that point at any%ef?ﬂﬁﬁm.
The standard is therefore requiring that the individual bytes making up an object are uniquely identifiape.
An implementation cannot hide the internal bits of an object. The ordering of bytes within an object\%ﬁﬁmh

their relative addresses is not defined by the standard (although the relative order of structure memberssand

unsigned char

array elements is defined). This requirement does not prevent more than one object from sharing tresissivie

address (i.e., their lifetimes may be different, or they may be members of a union type). 448,i'ffgzgr§;>gpafe fater
. of object
Common Implementations 523 UNION type

overlapping

So-calledword addressegrocessors only assign unique addresses to units of storage larger than 8 bitg:ffuressing
instance, 32-bit quantities, the word). Implementations for such processors have two choices: (1) define a
byte to be the word size (e.qg., the Motorola DSP56300 which has a 24 bi®#behd the Analog Devices

SHARC has a 32-bit wokéf!), or (2) addresses of types smaller than a word use a different representation.
Unless there is hardware support, the choice is usually to select the first option. With hardware support,
some vendors chose option 2 (or to be exact they did not like option 1 and added support for a different
representation, the offset of the byte within a word being encoded in additional representation bits). For
instance, the Cray P38l uses a 64-bit representation for pointers to characteveiditypes and a 32-bit

value representation for pointers to other types (a 64-bit object representation is used); a version of PRIME
Computers C compiler used 48-bit and 32-bit representations, respectively.

For the HP 3000 architecture, it was necessary to be extremely careful of conversions from byte ad-
dresses to word addresses and vice versa because of negative stack addressing, which makes byte addresses
ambiguous. The original Hewlett-Packard MPE processor (not the later models based on PA-RISC) was
word addressed, using 16-bit words (128 K bytes). Byte addresses were signed from -64 K to +64 K, the
sign depending on the current setting of the DL and Z registers. This scheme made it possible to access all
the storage using byte addresses, but it created an ambiguity in the interpretation of a byte address value
(this could only be resolved by knowing the settings of two processor registers).

Some processors anord addressednd don't use all the available representation bits. For instance, the
Data General Nov& ! used only 15 of a possible 16 bits to address storage. The convention of using the
additional bit to represent one of the two 8-bit quantities within a 16-bit word was adopted as a software
solution to a hardware limitation (i.e., two software routines were provided to read and write individual
bytes in storage, using addresses constructed using this convention).

June 16, 2005 v1.0a

alignment ss8
pointers

object 566
contiguous
sequence of bytes

value 569
copied using
unsigned char
value rep- 591
resentation
object rep- 570
resentation
CHAR_BIT 304

macro

low-order bit

The C Standard recognizes that not all pointer types have the same representation requirements.

Coding Guidelines

Developers often assume more about the properties of the addresses of bytes than the C Standard requir
of an implementation support; for instance, the extent to which bytes are allocated at similar addresses (at
important consideration if performing relational operations on those addresses). The extent to which it is
possible to make assumptions about the addresses of bytes is discussed elsewhere.

Example
1 #include <stdio.h>
2
3 extern short glob;
4
5 void f(void)
6
7 int working_g = glob;
8 /*
9 * Write out bytes, starting from least significant byte.
10 */
1 for (int g_index=0; g_index < sizeof(glob); g_index++)
12 {
13 unsigned char uc = (working_g & UCHAR_MAX);
14 fwrite(&uc, 1, 1, stdout);
15 working_g >>= CHAR_BIT;
16 }
17
18 /%
19 * Will the following generate least or most significant
20 * byte orderings? Could be same or different than above.
21 */
22 fwrite(&glob, sizeof(glob), 1, stdout);
23}

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation- 55
defined.

Commentary
Implementations where, for instance, the first four bits of a byte are separated from the second four bits by
a single bit that is not part of that byte are not permitted. The typdgned char is specified to use all
the bits in its representation. The representational issues of this contiguous sequence of bits are discusse
elsewhere.

The number of bits must be at least 8, the minimum value o€HA®_BIT macro.

Common Implementations

At the hardware level, storage can use one or more parity bits for error detection and correction (more thar
one bit is required for this). These additional bits are not visible through the conventional storage access
mechanisms. Some hardware platforms do provide methods for accessing the bits in storage at the chi
level.

The least significant bit is called the low-order bit; 56

Commentary
This defines the terfow-order bit

v1.0a June 16, 2005

3.7.1

high-order bit
57 the most significant bit is called the high-order bit.
Commentary
This defines the terrigh-order bit
3.7
58 character character
<abstract>

(abstract) member of a set of elements used for the organization, control, or representation of data

Commentary

This is the abstract definition of the tercharacter(it is a very minor rewording of the definition given
in ISO/IEC 2382-1:1993). The C-specific sense of the telaracteris given in the following (standard)
sentence.

Characters are not created as stand-alone entities. Each is part of a larger whole, a character set. There
are a large number of character sets, one for almost ever human language in the world. A character set
provides another means of interpreting sequences of bits.

Characters are the smallest components of written languages that can have semantic value. The visiblegiyph
appearance of a character when it is displayed is callglyfzh (there are often many different possible
glyphs that can be used to represent the same character). A single character may be representable in a single
byte (usually an alphabetic character) or may require several bytes (a multibyte character, often repredifiisg
what English speakers would call a symbol). A repertoire (set) of glyphs is called a font (see Figure ?82%?[.‘?3};

The C Standard defines the basic character set that it requires an implementation to support. ~ 2°Basic source

C++

The G+ Standard does not define the teomaracter however, it does reference ISO/IEC 2382. Part
1, Clause 01.02.11, definebaracterusing very similar wording to that given in the C Standard. The
following might also be considered applicable.

17.1.2
in clauses 21, 22, and 27, means any object which, when treated sequentially, can represent text. The term does
not only mearnchar and wchar_t objects, but any value that can be represented by a type that provides the
definitions provided in these clauses.

3.7.1

59 character _Ch:lalrabctter
. single-byte
single-byte character (C) bit representation that fits in a byte gehy

Commentary

This is the C-specific definition of the tercharacter It is a little circular in that byte is defined in terms %Eﬁﬁisaue

a character. The definition of the tegharacter referring to it in the abstract sense, is given in the previoﬂ"s
sentence. Members of the basic source character set are required to fit in a byte. By definition af3PRfgat"se
character that fits in a byte is a single-byte character.

C++

The G+ Standard does not define the techaracter This term has different meanings in different applica-

tion contexts and human cultures. In a language that supports overloading, it makes no sense to restrict the
usage of this term to a particular instance.

June 16, 2005 v1.0a

3.7.3

Coding Guidelines

The terms character and byte are often used interchangeably by C developers. Changing developers’ existir
terminological habits may be very difficult, but this is not a reason why coding guideline documents should
be sloppy in their use of terminology. Separating the two concepts can be helpful in highlighting potential
problems associated with assuming particular representations for members of character sets (usually Ascii)

3.7.2

multibyte charac-
ter

extended 213
character set

multibyte 240

character
state-dependent
encoding

1ISO 2022 240

basic char- 213
acter set

extended 213

character set

wide character

multibyte 6o
character

multibyte character 60

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

Commentary

Multibyte characters are a means of representing characters from those character sets that contain mol
members than can be represented in a §fte Somewhat confusingly the terextended character set
used by the C Standard to denote all supported characters, not just the extended characters.

A multibyte character is usually made up of a sequence of bytes that can be typed on a keyboard. The
sequence of byte values does not usually correspond to the numeric values (this is what a wide characte
is) of a member of the execution character set, but there is an algorithm (usually a finite state machine) for
converting them to this value.

Note: The use of the terrharacterin the C Standard excludes multibyte characters, unless explicitly
stated otherwise. This convention is also followed in the non-C Standard material in this book.

Common Implementations

The sequence of bytes in a multibyte character often has no relationship to what a developer types on «
keyboard. For instance, at one end of the scale UTF-8 is unrelated to keystrokes. At the other end, man
European keyboards hagead keyso that the single-byte charactergraveor i-circumflexmight be typed
asgravefollowed bya or circumflexfollowed byi.

The most commonly used encoding methods include 1ISO 2022, EUC (Extended Unix Code), Big Five,
Shift-JIS, and 1SO 10646. Lunt§é-842 covers East Asian characters and their representations and encod-
ings in great detail.

NOTE The extended character set is a superset of the basic character set. 61

Commentary
The definition of the termbasic character sedndextended character sehplies that they are disjoint sets.

3.7.3

wide character 62

bit representation that fits in an object of type wchar_t, capable of representing any character in the current
locale

Commentary
A wide character can be thought of as the execution-time representation of a multibyte character. It is a
pattern of bits held in an object, of tygehar_t, much like a character is a pattern of bits. Tiekar_t type
often contains more than one byte, so itis capable of representing many more values. The bit representatio
of a particular character, held in an objectwahar_t type, can vary between locales.

Wide characters are best suited to be used when the numeric values of the characters are of importanc
or when a fixed-size object is needed to manipulate character data.

v1.0a June 16, 2005

CH++
The G+ Standard uses the tenmide-character literabndwide-character sequencek?.3.2.1.3.3, but does
not define the ternwide character

A character literal that begins with the lettér such asl.’x’, is a wide-character literal. 2.13.2p2

Common Implementations
On many implementations thehar_t type usually occupies 16 bits. So, up until recently, it was capable

of being used to hold the values assigned to characters by the Unicode Consortium. 281S0 10646
3.8
63 constraint constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be interpreted

Commentary
These are the constructs that a conforming translator must detect and issue a diagnostic for, if encountered
during translation of the source. Constraint and syntax violations are the only kinds of construct, defined by
the standard, for which an implementation is required to issue a diagnostic.

In C, constraints only appear in subclauses that have the heading Constraints. These appear in Clause
6, Language, but not Clause 7, Library. These language constraints are specified by use of steallvardal
within one of these subclauses. Violating a requirement specified using thesthaltthat appears within
another kind of subclause causes undefined behavior. eashall

CH++
The G+ Standard does not contain any constraints; it contains diagnosable rules.

a C+ program constructed according to the syntax rules, diagnosable semantics rules, and the One Definyo%gﬁixe”'formed
Rule (3.2).

However, the library does use the term constraints.

17.4.3 Constraints

This subclause describes restrictions ort@rograms that use the facilities of the-€Standard Library. on programs

This subclause describes the constraints upon, and latitude of, implementations of tB&6dard library. 17.4.4p1

But they are not constraints in the C sense of requiring a diagnostic to be issued if they are violated. Like C,
the G+ Standard does not require any diagnostics to be issued during program execution.

Coding Guidelines

There is a common, incorrectly, held belief that diagnostics are issued for violations of any requirement
contained within the C Standard. Diagnostics need only be issued for violations of requirements contained
within a Constraints clause. Educating developers of the differences between constraints and the other forms
of behavior described in the standard is an issue that is outside the scope of these coding guidelines.

Usage

There are 134 instances of the watthllin a Constraints clause (out of 588 in the complete standard). This
places a lower bound on the number of constraints that can be violated (some skal @éscribe more
than one kind of construct).

3.9

June 16, 2005 v1.0a

..0101 ..0110 ..0111 ...1000

Figure 64.1: Some exactly representable values and three valyés &ndc) that are not exactly representable.

correctly rounded correctly rounded result 64
result representation in the result format that is nearest in value, subject to the effective rounding mode, to what
the result would be given unlimited range and precision

Commentary
In Figure 64.1 the valué is midway between the representable valuesdy. The representable value it
will round to depends on the sign of its value, whether the rounding mode is round-to-even (least significant
bit not set), round-to-zero, or round-toinfinity. The valuegndc have anearestvalue to round to, if that
rounding mode is in effect.

DBL_MAX* (1+DBL_EPSILON) is nearestto DBL_MAX (in the Euclidean sense) but it is rounded to infinity.

The result referred to here is the result of a single arithmetic operation, not the result of an expression
containing more than one operation. For instance, the expressien consists of the operatiab, whose
result then has subtracted from it. I&=1, b=1E-25, andc=1, the correctly rounded result (assuming IEC
60559 single-precision) of+b is 1, and after the subtraction operation the final result of the complete
expression i® (the expression can be rewritten to return the resiiRs).

The notation used to indicate rounded arithmetic operations is to place a circle around the operator; for
instance:

x @y = round(z + y) (64.1)

wherex + y denotes the exact mathematical result. Based on the preceding example it is obvious that, in
general:

a®boSc#aScdb (64.2)

The issue of correctly rounded results for some of the functions defined in the keadkrh> is discussed
by Lefévre and Mullef®!

C++
This term is not defined in thet€Standard (the termoundedonly appears once, when discussing rounding
toward zero).

Common Implementations
Implementations that don't always round correctly include some Cray processors and the IBM S/360 (trun-
cates).

Some implementations use a different rounding process when performing I/O than when performing

frintt floating-point operations. For instance, should the gadhtf("%.0£", 2.5) produce the same correctly

rounded result (as output @atdout) as the value stored in an equivalent assignment expression?

Park$'° discusses methods for generating test cases that stress various boundary conditions that occt
when rounding floating-point values.

v1.0a June 16, 2005

3.10 S

Coding Guidelines

The fact that the terngorrectly rounded resultan denote different values under different circumstances

is something that should be included in the training of developers’ who write code that uses floating-point
types.

Obtaining the correctly rounded result of an addition or subtraction operation requires an additional bit
in the significand (as provided by the IEC 60559 guard bit) to hold the intermediate [f&8ulVhen
multiplying two p bit numbers the complet#p bits of the intermediate result need to be generated, before
producing the final correctly roundeg bit, result. A floating-point calculation that frequently occurs, for
instance, in the evaluation of the determinant of a matrix is:

1 float d, w, x, vy, z;

2

3 /* Use casts in case the minimum evaluation format is float. */
4

5

d = ((double)w) * x - ((double)y) * z;

If the relative precision of the typdouble is at least twice that of the typloat, then the result will be
correctly rounded (implementations where the typeésat anddouble have the same precision are not
uncommon).

3.10

65 diagnostic message diagnostic
message belonging to an implementation-defined subset of the implementation’s message output message

Commentary

There is no requirement that the diagnostic message say anything of consequence. An implementation
could chose to play a tune. Market forces usually dictate that the quality of most implementation diagnostic
messages be more informative.

Common Implementations
Most implementations attempt to localize the construct being diagnosed. Localization usually occurs to the
extent of giving a line number in the source code and an offset within that line. In some cases, for instance
during macro expansion, the exact line number or character offset within a line may not be clear-cut.

All vendors like to think that their diagnostic messages are meaningful to developers. Diagnostic mes-
sages sometimes include a reference to what is considered to be the appropriate section of the C Standard.

Example

void f(int valu)
{
int log;

VALY
if (valu == 99)
{
int loc;
JE oL %
}

© 0 N e O A W N e

B
» o

valu = loc;
/*

* What diagnostic is applicable to the previous statement:

B e e
a2 @ N

o loc not declared,
o statement valu=loc should occur before prior closing brace,

PR
~N o

June 16, 2005 v1.0a

M3.13

3.11

forward reference

18 * o Previous closing brace should appear after this statement,
19 * o Identifier log misspelled as loc.
20 */
21}
forward reference 66

reference to a later subclause of this International Standard that contains additional information relevant to

this subclause

Commentary

The references contained within a forward reference are not always exhaustive, neither are all applicable
forward references always cited.

C++

C++ does not contain any forward reference clauses. However, the other text in the other clauses contair
significantly more references than C99 does.

3.12

implementation

implementation 67
particular set of software, running in a particular translation environment under particular control options, that
performs translation of programs for, and supports execution of functions in, a particular execution environ-
ment

Commentary
The Committee tried to be as general as possible. They did not want to tie down how C programs might be
processed to obtain the output required by the abstract machine.

It is not necessary to move to a different O/S or processor to use a different implementation. Each new
release of a translator is a different implementation, even each invocation of a translator with different
options enabled, or use of a different set of libraries, is a different implementation.

C++
The G+ Standard does not provide a definition of what an implementation might be.

Common Implementations

The software running in the translation environment is usually called a compiler. The software running in
the execution environment is usually called the runtime system; it may also include an interpreter for the
code generated by the compiler.

3.13

implementation
limit

environ- 270

mental
limits

translation 273
limits

implementation limit 68
restriction imposed upon programs by the implementation

Commentary
The Committee recognized that there are limits in the real world. The intent of calling them out is to
highlight to the developer where they might occur and, by specifying values to give a base to work from.

Common Implementations

Allimplementations have limits of various kinds. Even if very large amounts of memory and swap space are
available, given a sufficiently large program, it will not be sufficient. Implementations also place limits on
the range and precision of representable values. In this case there are efficiency issues; it would be possib
to provide arbitrary ranges and precision. The greater the range and precision that must be handled, th:
longer it takes to perform an operation.

v1.0a June 16, 2005

3.14 m

Coding Guidelines

Having a program keep within all implementation limits increases its portability. However, the extent to
which portability to hosts is likely to impose limits, that a program exceeds, is an issue that needs to be
decided by management. Specific implementation issues are discussed, in these coding guidelines, where
they occur in the C Standard.

3.14

69 object object
region of data storage in the execution environment, the contents of which can represent values

Commentary

Objects are created by definitions and calls to the library memory-allocation functions. The region of data

storage for objects is a contiguous sequence of bytes. Representation of values within the regioﬁ%é)ﬂ%fésa

storage allocated to objects is discussed in great detail later in the standard. so1valle repré.

G+ sroobjedt repre-
sentation

While anobjectis also defined, 1.8p1, to be a region of storagetity e term has many other connotations
in an object-oriented language.

Other Languages
What C calls objects are often called variables in other languages.

Coding Guidelines

Many developers use the temwrariableto refer to what the C Standard calls an object. The introduction of
the termobject-orientechas meant that few developers use the tebjectin the C sense. Trying to change
developer terminology in this case is liable to lead to confusion, and to be of little use (apart from being
technically correct).

Example

#include <stdlib.h>

extern int glob; /* Declaration of a named object. */

{

1

2

3

4

5 void f(long param) /* A parameter is also an object. */

6

7 typedef short S_17; /* No storage created, not an object. */
8

9

float * p_f = (float *)malloc(sizeof(float)); /* Create an unnamed object. */
10 }

The response to DR #042 (question 2) specified that the bytes from which an object is composed need not
correspond to any type declared in the program. For instance, a contiguous sequence of elements within an
array can be regarded as an object in its own right. Nonoverlapping portions of an array can be regarded as
objects in their own right.

#include <stdlib.h>
#include <string.h>

extern int N;
void DR_042(void)

{
void *p = malloc(2*N); /* Allocate an object. */

© 0 N e g A W N e

{

=
15}

June 16, 2005 v1.0a

3.15

reference
object

access 35

particu- 719

lar type
memcpy
function

effective type 941

1.8p1

malloc
function

effective type 941

effective type 941

1 char (*q)[N] = p; /*
12 * The object pointed to by p may be interpreted
13 * as having type (char [2][N]) when referenced
14 * through q.
15 */
16 memcpy(q[1], q[0], N);
17 }
18 {
19 char *r = p; /*
20 * The object pointed to by p may be interpreted as
21 * having type (char [2*N]) when referenced through r.
22 */
23 memcpy(r+N, r, N);
24 }
25}
NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1. 70
Commentary

A reference that is also an access requires the bits making up an object to be interpreted as a value. Thi
requires that it be interpreted as having a particular type. A reference that does not interpret the contents o
an object, for instance an argument to #fe@cpy library function, does not need to interpret it as having a
particular type. The issue of the type of an object, when it is referenced, is dealt with in detail elsewhere.

C++

The properties of an object are determined when the object is created.

This referenced/creation difference, compared to C, is possible-irb€cause it contains theew and
delete operators (as language keywords) for dynamic-storage allocation. The type of the object being
created is known at the point of creation, which is not the case whenattimc library function is used

(one of the reasons for the introduction of the concept of effective type in C99).

Coding Guidelines

The general guideline recommendation is that objects shall only be referenced using their effective type (if
they have one).

Example
1 static int glob;
2
3 void f(void)
4 Ao
5 unsigned char *p_uc = (unsigned char *)&glob;
6
7 glob = 3; /* Object glob interpreted to have type int. */
8
9 *p_uc = 3; /* Same object interpreted as an array of unsigned char. */
10)

3.15

v1.0a June 16, 2005

3.17

71 parameter parameter
formal parameter formal parameter
formal argument (deprecated)
object declared as part of a function declaration or definition that acquires a value on entry to the function,
or an identifier from the comma-separated list bounded by the parentheses immediately following the macro
name in a function-like macro definition
Commentary
The termformal arguments rarely used. The terrformal parameteris sometimes seen in documents
written by people with a mathematically oriented computer science education.

Coding Guidelines
The termsargumentand parameterare sometimes incorrectly interchanged in discussions between dewethent
opers. The context can often be used by the listener to deduce the intended meaning.

Example

#define FUNC_MACRO(x, y) /* Two parameters. */

void f(int param_1) /* One parameter. */
{/* ... %}

int g(param_2) /* One parameter. */
int param_2;

{7 ... %%

[N I N I

3.16

72 recommended practice recommen(ti_ed
specification that is strongly recommended as being in keeping with the intent of the standard, but that may practice
be impractical for some implementations
Commentary
The Recommended practice subsections have no more status than any other statement in the C Standard that
is not mandatory.

C90

TheRecommended practiseibsections are new in C99.

C++

C+ gives some recommendations inside “[Note: . . .]”, but does not explicitly define their status (from
reading G+ Committee discussions it would appear to be non-normative).

Other Languages

Ada 95,1.1.2
Structure

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a recom-
mendation, not a requirement. It is implementation defined whether or not a given recommendation is obeyed.

Implementation Advice

Common Implementations
The C99 Standard is still too new to have any experience with how closely the new concept of recommended
practice is followed.

June 16, 2005 v1.0a

3.17.1

Coding Guidelines

The extent to whicllecommended practisewill be followed by implementations is unknown. The specific
instances are discussed when they occur.

3.17

value value 73
precise meaning of the contents of an object when interpreted as having a specific type

Commentary
dedlara For instance, the bits making up an object could be interpreted as an integer value, a pointer value, or ¢
femanen > floating-point value. The definition of the type determines how the contents are to be interpreted.

of identifier

C(')f:]tsetgﬁ;m A literal also has a value. Its type is determined by both the lexical form of the token and its numeric

type first in list Val ue.
C++

394 The value representation of an object is the set of bits that hold the value df.type

Coding Guidelines
represen- s6s.1 This definition separates the ideas of representation and value. A general principle behind many guidelines
tationin- s that making use of representation information is not cost effective. The C Standard does not provide many

formation . o .) o .
vihe guarantees that any representation is fixed (in places it specifies that two representations are the same).
Example

1 #include <stdio.h>
2
3 union {
4 float mem_1;
5 int mem_2;
6 char *mem_3;
7 } x = {1.234567};
8
9 int main(void)
10 {
1 /*
12 * Interpret the same bit pattern using various types.
13 * The values output might be: 1.234567, 1067320907, 0x3f9e064b
14 */
15 printf("%f, %d, %p\n", x.mem_1, x.mem_2, x.mem_3);
16}

3.17.1

implementation- implementation-defined value 74
p p

defined value nspecified value where each implementation documents how the choice is made

Commentary

Implementations are not required to document any unspecified value unless it has been specified as bein
implementation-defined. The semantic attribute denoted by an implementation-defined value might be ap
FLT EvaL METHdHicable during translation (e.gFLT_EVAL_METHOD), or only during program execution (e.g., the values

arivies assigned targv on program startup).

unspeci- 76
fied value

v1.0a June 16, 2005

3.17.2 S

Ca0

Although C90 specifies that implementation-defined values occur in some situations, it never formally de-
fines the term.

C++
The G+ Standard follows C90 in not explicitly defining this term.

Coding Guidelines

Implementation-defined values can vary between implementations. In some cases the C Standard defines
a symbol (usually a macro name) to have certain properties. The key to using symbolic names is t34aRE
use of the property they represent, not their particular numerical value. For instance, a comparison against
UCHAR_MAX should not be thought of as a comparison against the aib€or whatever its value happens

to be), but as a comparison against the maximum value an object has4tgned char type can have. In

some cases the result of an expression containing a symbolic name can still be considered to have a property.
For instanceJCHAR_MAX-3 might be said to represent the symbolic value having the property of being three
less than the maximum value of the twoesigned char.

Example

#include <limits.h>

void f(void)

{

int max_int_div_10 = INT_MAX / 10;

int bottom_bits = LONG_MAX & Ox00ff;

long 1sb_set = LONG_MAX | 0x00001;

int max_val = (LONG_MAX > INT_MAX) ? INT_MAX : SHRT_MAX;

© ® N o O s W N P

=
o

if (bottom_bits < LONG_MAX)

11 bottom_bits++;
12 if (Ilsb_set == LONG_MAX)
13 1sb_set--;

if (LONG_MAX)
max_int_div_10--;

}

TN
o o b

3.17.2

75 indeterminate value indetermi-
. - . nate value
either an unspecified value or a trap representation

Commentary _
This is the value objects have prior to being assigned one by an executing program. In practice it is d“r’éﬁ’é’f&p—

eterminate

tual value because, in most implementations, an object’s value representation makes use of all bit pgtterns
available in its object representation (there are no spare bit patterns left to represent the indeterminate value).

Accessing an object that has an unspecified value results in unspecified behavior. However, accéﬁgﬂ’ﬁi&‘ﬁ‘

object having a trap representation can result in undefined behavior. 5752:&;%%;6-
reading is unde-
c++ fined behavior

Objects may have an indeterminate value. However, the standard does not explicitly say anything about the
properties of this value.

4.1p1

June 16, 2005 v1.0a

3.17.3

..., orif the object is uninitialized, a program that necessitates this conversion has undefined behavior.

Common Implementations
A few execution time debugging environments tag storage that has not had a value stored into it so that rea
accesses to it cause a diagnostic to be issued.

Coding Guidelines

Many coding guideline documents contain wording to the effect that “indeterminate value shall not be used

by a program.” Developers do not intend to use such values and such usage is a fault. These coding
guidelineso o jidelines are not intended to recommend against the use of constructs that are obviously faults.

not faults

Example

1 extern int glob;
2
3 void f(void)
4 o
5 int int_loc; /* Initial value indeterminate. */
6 unsigned char uc_loc;
7
8 /*
9 * The reasons behind the different status of the following
10 * two assignments is discussed elsewhere.
11 */
12 glob = int_loc; /* Indeterminate value, a trap representation. */
13 glob = uc_loc; /* Indeterminate value, an unspecified value. */
14}

3.17.3

unspecified value unspecified value 76

valid value of the relevant type where this International Standard imposes no requirements on which value is
chosen in any instance

Commentary
”“i”;ﬂf}ﬁ;’r * Like unspecified behavior, unspecified values can be created by strictly conforming programs. Making use
of such a value is by definition dependent on unspecified behavior.

Coding Guidelines
In general programs may cause unspecified values to be generated, but may not then make use of suc

unspecified ss yalues. This issue is discussed in more detail in those cases where unspecified values are created.

Example

1 extern int ex_f(void);

2

3 void f(void)

4 |

5 1int loc;

6 /*

7 * If a call to the function ex_f returns a different value each
8 * time it is invoked, then the evaluation of the following can
9 * yield a number of different possible results.

10 */

11 loc = ex_f() - ex_f(Q);

12}

v1.0a June 16, 2005

4. Conformanc

77 NOTE An unspecified value cannot be a trap representation.
Commentary

Unspecified values can occur for correct program constructs and correct data. A trap representation is likely

to raise an exception and change the behavior of a correct program.

3.18

78 [z] ceiling
ceiling of x: the least integer greater than or equal to x
Commentary
The definition of a mathematical term that is not defined in ISO 31-11. 231S0 31-11

79 EXAMPLE [2.4] is 3, [-2.4] is -2.

3.19

80 LJUJ floor
floor of x: the greatest integer less than or equal to x
Commentary
The definition of a mathematical term that is not defined in ISO 31-11. 231S0 31-11

EXAMPLE

81 EXAMPLE [2.4] is 2, |-2.4] is -3.
4. Conformance
Commentary

conformance-
compliance

In the C90 Standard this header was tittedmpliance Since this standard talks about conforming and
strictly conforming programs it makes sense to change this title. Also, from existing practice, the term
Conformances used by voluntary standards, such as International Standards, while thederpliances

used by involuntary standards, such as regulations and laws.

SC22 had a Working Group responsible for conformity and validation issues, WG12. This WG was
formed in 1983 and disbanded in 1989. It produced two docum&&/EC TR 9547:1988— Test meth-
ods for programming language processors — guidelines for their development and procedures for their
approvalandISO/IEC TR 10034:1990— Guidelines for the preparation of conformity clauses in program-

ming language standards

shall

82 In this International Standard, “shall” is to be interpreted as a requirement on an implementation or on a

program;
Commentary

How do we know which is which? In many cases the context in whichstiadl occurs provides the
necessary information. Most usagessbgll apply to programs and these commentary clauses only point

out those cases where it applies to implementations.

The extent to which an implementations is required to follow the requirements specifiedshalhig
affected by the kind of subclause the word appears in. Violatislgadl requirement that appears insidesghall - ..
subsection heade@onstraintclause is a constraint violation. A conforming implementation is requireektestraint

issue a diagnostic when it encounters a violation of these constraints.

The termshouldis not defined by the standard. This word only appears in footnotes, examples, recom-
mended practices, and in a few places in the library. The teustis not defined by the standard and only

occurs once in it as a word.

June 16, 2005 v1.0a

1611EXAMPLE
compatible
function prototypes

4. Conformance

SO
shall rules

shall 84
outside constraint

constraint 3

shall .
outside constraint

I1ISO
shall rules

I1SO 84

shall rules

C++

The G+ Standard does not provide an explicit definition for the tehall. However, since the€ Standard
was developed under ISO rules from the beginning, the default ISO rules should apply.

Coding Guidelines

Coding guidelines are best phrased using “shall” and by not using the words “should”, “must”, or “may”.
Usage

The wordshall occurs 537 times (excluding occurrencesloéll noj in the C Standard.

conversely, “shall not” is to be interpreted as a prohibition. 83

Commentary

In some cases this prohibition requires a diagnostic to be issued and in others it results in undefined behavio
An occurrence of a construct that is the subject shall notrequirement that appears inside a subsection
headedConstraintclause is a constraint violation. A conforming implementation is required to issue a
diagnostic when it encounters a violation of these constraints.

Coding Guidelines

Coding guidelines are best phrased ushgll notand by not using the wordshould not must not or may
not

Usage

The phrasehall notoccurs 51 times (this includes two occurrences in footnotes) in the C Standard.

If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the behavior is undefined. 84

Commentary
This C sentence brings us onto the use of ISO terminology and the history of the C Standard. I1SO use
of terminology requires that the wosthall implies a constraint, irrespective of the subclause it appears in.
So under ISO rules, all sentences that use the wball represent constraints. But the C Standard was
first published as an ANSI standard, ANSI X3.159-1989. It was adopted by ISO, as ISO/IEC 9899:1990,
the following year with minor changes (e.qg., the term Standard was replaced by International Standard anc
there was a slight renumbering of the major clauses; theredd acript that can convert the ANSI text to
the I1SO text), but thehalls remained unchanged.

If you, dear reader, are familiar with the ISO rulessirall, you need to forget them when reading the C
Standard. This standard defines its own concept of constraints and measirajl.of

C++

This specification for the usage shall does not appear in ther€Standard. The 1SO rules specify that

the meaning of these terms does not depend on the kind of normative context in which they appear. One
implication of this C specification is that the definition of the preprocessor is differentin € was
essentially copied verbatim from C90, which operated under diffesteitrules :-O.

Coding Guidelines

Many developers are not aware that the C Standard’s meaning of theshathis context-dependent. If
developers have access to a copy of the C Standard, it is important that this difference be brought to theil
attention; otherwise, there is the danger that they will gain false confidence in thinking that a translator will
issue a diagnostic for all violations of the stated requirements. In a broader sense educating developer
about the usage of this term is part of their general education on conformance issues.

Usage
The wordshallappears 454 times outside of a Constraint clause; however, annex J.2 only lists 190 undefined
behaviors. The other uses of the waithll apply to requirements on implementations, not programs.

v1.0a June 16, 2005

4. Conformanc

85 Undefined behavior is otherwise indicated in this International Standard by the words “undefined behavior” ugdﬁfin_ed
or by the omission of any explicit definition of behavior. indicated by
Commentary

Failure to find an explicit definition of behavior could, of course, be because the reader did not look hard
enough. Or it could be because there was nothing to find, implicitly undefined behavior. On the whole
the Committee does not seem to have made any obvious omissions of definitions of behavior. Those DRs
that have been submitted to WG14, which have later turned out to be implicitly undefined behavior, have
involved rather convoluted constructions. This specification for the omissions of an explicit definition is
more of a catch-all rather than an intent to minimize wording in the standard (although your author has
heard some Committee members express the view that it was never the intent to specify every detail).

The termshall can also mean undefined behavior. sashall o
C++
The G+ Standard does not define the status of any omission of explicit definition of behavior.
Coding Guidelines
Is it worth highlighting omissions of explicit definitions of behavior in coding guidelines (the DRs in the
record of response log kept by WG14 provides a confirmed source of such information)? Pointing out
that the C Standard does not always fully define a construct may undermine developers’ confidence in it,
resulting in them claiming that a behavior was undefined because they could find no mention of it in the
standard when a more thorough search would have located the necessary information.

Example
The following quote is from Defect Report #019, Question 19 (raised against C90).

X3J11 previously said, “The behavior in this case could have been specified, but the Committee has decideeR #019
more than once not to do so. [They] do not wish to promote this sort of macro replacement usage.” | interpret

this as saying, in other words, “If we don’t define the behavior nobody will use it” Does anybody think this
position is unusual?

Response

If a fully expanded macro replacement list contains a function-like macro name as its last preprocessing token,
it is unspecified whether this macro name may be subsequently replaced. If the behavior of the program depends
upon this unspecified behavior, then the behavior is undefined.

For example, given the definitions:
#define f(a) a*g
#define g(a) f(a)
the invocation:
£(2)(9)
results in undefined behavior. Among the possible behaviors are the generation of the preprocessing tokens:
2%£(9)
and

2%9%*g
Correction
Add to subclause G.2, page 202:

-- A fully expanded macro replacement list contains a
function-like macro name as its last preprocessing token (6.8.3).

June 16, 2005 v1.0a

4. Conformance

Subclause G.2 was the C90 annex listing undefined behavior. Different wording, same meaning, appears il
annex J.2 of C99.

There is no difference in emphasis among these three; 86

Commentary
It is not possible to write a construct whose behavior is more undefined than another construct, simply
because of the wording used, or not used, in the standard.

Coding Guidelines

There is nothing to be gained by having coding guideline documents distinguish between the different ways
undefined behavior is indicated in the C Standard.

they all describe “behavior that is undefined”. 87

program A program that is correct in all other aspects, operating on correct data, containing unspecified behavior shall 88

&oMest program be a correct program and act in accordance with 5.1.2.3.

Commentary
unspecified 2 As pointed out elsewhere, any nontrivial program will contain unspecified behavior.
A wide variety of terms are used by developers to refer to programs that are not correct. The C Standarc

fault does not define any term for this kind of program. Terms, sudhw@sanddefect are defined by various
introductiondefect, i
introduction standards:

ANSI/IEEE Std

729-1983, IEEE

Si:azﬁgfﬂfvg’; error. (1) A discrepancy between a computed, observed, or measured value or condition and the true, specified,
yEnginee,ing or theoretical correct value or condition.

Terminology

defect. See fault.

(2) Human action that results in software containing a fault. Examples include omission or misinterpretation of
user requirements in a software specification, incorrect translation or omission of a requirement in the design
specification. This is not the preferred usage.

fault. (1) An accidental condition that causes a functional unit to fail to perform its required function.

(2) A manifestation of an error(2) in software. A fault, if encountered, may cause a failure. Synonymous with
bug.

Qf‘osllgﬂggzy Error (1) A discrepancy between a computed, observed or measured value or condition and the true, specified

Recommended Or theoretically correct value or condition. (2) Human action that results in software containing a fault. Ex-
Pvrvz‘igcsgﬁ;aﬁg/ amples include omission or misinterpretation of user requirements in a software specification, and incorrect
translation or omission of a requirement in the design specification. This is not a preferred usage.

Failure (1) The inability of a system or system component to perform a required function with specified limits.
A failure may be produced when a fault is encountered and a loss of the expected service to the user results. (2)
The termination of the ability of a functional unit to perform its required function. (3) A departure of program
operation from program requirements.

Failure Rate (1) The ratio of the number of failures of a given category or severity to a given period of time;
for example, failures per month. Synonymous with failure intensity. (2) The ratio of the number of failures to a
given unit of measure; for example, failures per unit of time, failures per number of transactions, failures per
number of computer runs.

Fault (1) A defect in the code that can be the cause of one or more failures. (2) An accidental condition that
causes a functional unit to fail to perform its required function. Synonymous with bug.

v1.0a June 16, 2005

4. Conformanc

Quality The totality of features and characteristics of a product or service that bears on its ability to satisfy
given needs.

Software Quality (1) The totality of features and characteristics of a software product that bear on its ability

to satisfy given needs; for example, to conform to specifications. (2) The degree to which software possesses
a desired combination of attributes. (3) The degree to which a customer or user perceives that software meets

his or her composite expectations. (4) The composite characteristics of software that determine the degree to

which the software in use will meet the expectations of the customer.

Software Reliability (1) The probability that software will not cause the failure of a system for a specified time
under specified conditions. The probability is a function of the inputs to and use of the system, as well as a
function of the existence of faults in the software. The inputs to the system determine whether existing faults, if
any, are encountered. (2) The ability of a program to perform a required function under stated conditions for a
stated period of time.

C90

This statement did not appear in the C90 Standard. It was added in C99 to make it clear that a strictly con-
forming program can contain constructs whose behavior is unspecified, provided the output is not affected
by the behavior chosen by an implementation.

C++

. . . : . . 1.4p2
Although this International Standard states only requirements-gniif@plementations, those requirements are P

often easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules of this International Standard, a conforming implementation
shall, within its resource limits, accept and correctly execute that program.

. :)) . . fi
“Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and g 3

Programs which have the status, according to the C Standard, of being strictly conformingor conforming
have no equivalent status in C++.

Common Implementations

A program’s source code may look correct when mentally executed by a developer. The standard assumes
that C programs are correctly translated. Translators are programs like any other, they contain faults. Until
the 1990s, the idea of proving the correctness of a translator for a commercially used language was not taken
seriously. The complexity of a translator and the volume of source it contained meant that the resources
required would be uneconomical. Proofs that were created applied to toy languages, or languages that were
so heavily subseted as to be unusable in commercial applications.

Having translators generate correct machine code continues to be very important. Processors continue
to become more powerful and support gigabytes of main storage. Researchers continue to increase the size
of the language subsets for which translators have been proved d#it€ét’! They have also looked at
proving some of the components of an existing translgtar, correct?>°

Coding Guidelines

The phrasehe program is correcis used by developers in a number of different contexts, for instance, to
designate intended program behavior, or a program that does not contain faults. When describing adherence
to the requirements of the C Standard, the appropriate term to aeafisrmance

June 16, 2005 v1.0a

m 4. Conformance

#error
terminate transla-
tion

#error 89

16.5

#warning 1973

strictly conform-
ing program
use features of
language/library

transla- 137

Adhering to coding guidelines does not guarantee that a program is correct. Thepitaseprogram
does not really belong in a coding guidelines document. These coding guidelines are silent on the issue o
what constitutes correct data.

The implementation shall not successfully translate a preprocessing translation unit containing a #error 89
preprocessing directive unless it is part of a group skipped by conditional inclusion.

Commentary

The intent is to provide a mechanism to unconditionally cause translation to fail. Prior to this explicit
requirement, it was not guaranteed thatexror directive would cause translation to fail, if encountered,
although in most cases it did.

C90

C90 required that a diagnostic be issued wheewaror preprocessing directive was encountered, but the
translator was allowed to continue (in the sense that there was no explicit specification saying otherwise)
translation of the rest of the source code and sigonatessful translatioan completion.

C++

..., and renders the program ill-formed.

It is possible that a C++ translator will continue to translate a program after it has encountered a #error
directive (the situation is as ambiguous as it was in C90).

Common Implementations
Most, but not all, C90 implementations do not successfully translate a preprocessing translation unit contain
ing this directive (unless skipping an arm of a conditional inclusion). Some K&R implementations failed to
translate any source file containing this directive, no matter where it occurred. One solution to this problem
is to write the source a@&?=error, because a K&R compiler would not recognize the trigraph.

Some implementations include support faarning preprocessor directive, which causes a diagnostic
to be issued without causing translation to fail.

Example

1 #if CHAR_BIT != 8
2 #error Networking code requires byte == octet
3 #endif

A strictly conforming program shall use only those features of the language and library specified in this 90
International Standard.?

Commentary
In other words, a strictly conforming program cannot use extensions, either to the language or the library.

A strictly conforming program is intended to be maximally portable and can be translated and executed by
any conforming implementation. Nothing is said about using libraries specified by other standards. As far

tionphase as the translator is concerned, these are translation units processed in translation phase 8. There is no w
of telling apart user-written translation units and those written by third parties to conform to another API
standard.

Rationale

v1.0a June 16, 2005

4. Conformanc

The Standard does not forbid extensions provided that they do not invalidate strictly conforming programs,
and the translator must allow extensions to be disabled as discussed in Rationale §4. Otherwise, extensions
to a conforming implementation lie in such realms as defining semantics for syntax to which no semantics is
ascribed by the Standard, or giving meaning to undefined behavior.

C++

1.3.14 well-formed
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definitiogram

Rule (3.2).

The G+ termwell-formedis not as strong as the C testrictly conforming This is partly as a result of the
former language being defined in terms of requirements on an implementation, not in terms of requwements
on a program, as in C's case. There is also, perhaps, the thinking behind-ther@ of being able iﬁi??l%faa{fﬂ‘a”d
to check statically for a program being well-formed. The concept does not include any execution-time
behavior (which strictly conforming does include). TherGtandard does not defi